Mancini G M, Beerens C E, Aula P P, Verheijen F W
Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands.
J Clin Invest. 1991 Apr;87(4):1329-35. doi: 10.1172/JCI115136.
A defective efflux of free sialic acid from the lysosomal compartment has been found in the clinically heterogeneous group of sialic acid storage disorders. Using radiolabeled sialic acid (NeuAc) as a substrate, we have recently detected and characterized a proton-driven carrier for sialic acid in the lysosomal membrane from rat liver. This carrier also recognizes and transports other acidic monosaccharides, among which are uronic acids. If no alternative routes of glucuronic acid transport exist, the disposal of uronic acids can be affected in the sialic acid storage disorders. In this study we excluded the existence of more than one acidic monosaccharide carrier by measuring uptake kinetics of labeled glucuronic acid [( 3H]GlcAc) in rat lysosomal membrane vesicles. [3H]GlcAc uptake was carrier-mediated with an affinity constant of transport (Kt) of 0.3 mM and the transport could be cis-inhibited or trans-stimulated to the same extent by sialic acid or glucuronic acid. Human lysosomal membrane vesicles isolated from cultured fibroblasts showed the existence of a similar proton-driven transporter with the same properties as the rat liver system (Kt of [3H]GlcAc uptake 0.28 mM). Uptake studies with [3H]NeuAc and [3H]GlcAc in resealed lysosome membrane vesicles from cultured fibroblasts of patients with different clinical presentation of sialic acid storage showed defective carrier-mediated transport for both sugars. Further evidence that the defective transport of acidic sugars represents the primary genetic defect in sialic acid storage diseases was provided by the observation of reduced, half-normal transport rates in lymphoblast-derived lysosomal membrane vesicles from five unrelated obligate heterozygotes. This study reports the first observation of a human lysosomal transport defect for multiple physiological compounds.
在临床上异质性的唾液酸贮积症组中,已发现溶酶体区室中游离唾液酸的流出存在缺陷。我们以放射性标记的唾液酸(NeuAc)为底物,最近在大鼠肝脏的溶酶体膜中检测并鉴定了一种质子驱动的唾液酸载体。该载体还识别并转运其他酸性单糖,其中包括糖醛酸。如果不存在葡糖醛酸转运的替代途径,那么在唾液酸贮积症中糖醛酸的处理可能会受到影响。在本研究中,我们通过测量大鼠溶酶体膜囊泡中标记的葡糖醛酸[(3H)GlcAc]的摄取动力学,排除了存在多种酸性单糖载体的可能性。[3H]GlcAc的摄取是由载体介导的,转运亲和常数(Kt)为0.3 mM,唾液酸或葡糖醛酸可同等程度地顺式抑制或反式刺激该转运。从培养的成纤维细胞中分离出的人溶酶体膜囊泡显示存在一种类似的质子驱动转运体,其性质与大鼠肝脏系统相同([3H]GlcAc摄取的Kt为0.28 mM)。对具有不同临床表现的唾液酸贮积症患者培养的成纤维细胞的重封溶酶体膜囊泡进行[3H]NeuAc和[3H]GlcAc摄取研究,结果显示两种糖的载体介导转运均存在缺陷。在来自五名无关的 obligate 杂合子的淋巴母细胞衍生的溶酶体膜囊泡中观察到转运速率降低至正常速率的一半,这进一步证明了酸性糖转运缺陷是唾液酸贮积病的主要遗传缺陷。本研究首次报道了人类溶酶体对多种生理化合物的转运缺陷。