Suppr超能文献

乳腺癌的组合生物标志物表达。

Combinatorial biomarker expression in breast cancer.

机构信息

Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.

出版信息

Breast Cancer Res Treat. 2010 Apr;120(2):293-308. doi: 10.1007/s10549-010-0746-x. Epub 2010 Jan 28.

Abstract

Current clinical management of breast cancer relies on the availability of robust clinicopathological variables and few well-defined biological markers. Recent microarray-based expression profiling studies have emphasised the importance of the molecular portraits of breast cancer and the possibility of classifying breast cancer into biologically and molecularly distinct groups. Subsequent large scale immunohistochemical studies have demonstrated that the added value of studying the molecular biomarker expression in combination rather than individually. Oestrogen (ER) and progesterone (PR) receptors and HER2 are currently used in routine pathological assessment of breast cancer. Additional biomarkers such as proliferation markers and 'basal' markers are likely to be included in the future. A better understanding of the prognostic and predictive value of combinatorial assessment of biomarker expression could lead to improved breast cancer management in routine clinical practice and would add to our knowledge concerning the variation in behaviour and response to therapy. Here, we review the evidence on the value of assessing biomarker expression in breast cancer individually and in combination and its relation to the recent molecular classification of breast cancer.

摘要

目前乳腺癌的临床治疗主要依赖于可靠的临床病理变量和少数明确的生物学标志物。最近基于微阵列的表达谱研究强调了乳腺癌分子特征的重要性,以及将乳腺癌分类为具有明显生物学和分子差异的亚群的可能性。随后的大规模免疫组织化学研究表明,联合研究分子生物标志物表达的附加值大于单独研究。雌激素受体 (ER) 和孕激素受体 (PR) 以及 HER2 目前用于乳腺癌的常规病理评估。未来可能会加入其他生物标志物,如增殖标志物和“基底”标志物。更好地理解生物标志物表达组合评估的预后和预测价值,可以改善常规临床实践中的乳腺癌管理,并增加我们对行为和治疗反应差异的了解。在这里,我们回顾了评估乳腺癌中生物标志物单独和联合表达的价值的证据,并探讨了其与乳腺癌最近的分子分类之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验