文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在乳腺癌中的潜在诊断应用。

The Potential Diagnostic Application of Artificial Intelligence in Breast Cancer.

作者信息

Behzadi Matineh, Azinfar Anahita, Alshakarchi Hawraa Ibrahim, Khazaei Yeganeh, Gataa Ibrahim Saeed, Ferns Gordon A, Naderi Hamid, Avan Amir, Fiuji Hamid, Rad Masoud Pezeshki

机构信息

Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Kerbala, 56001, Iraq.

出版信息

Curr Pharm Des. 2025 Apr 8. doi: 10.2174/0113816128369168250311172823.


DOI:10.2174/0113816128369168250311172823
PMID:40207818
Abstract

Breast cancer poses a significant global health challenge, necessitating improved diagnostic and treatment strategies. This review explores the role of artificial intelligence (AI) in enhancing breast cancer pathology, emphasizing risk assessment, early detection, and analysis of histopathological and mammographic data. AI platforms show promise in predicting breast cancer risks and identifying tumors up to three years before clinical diagnosis. Deep learning techniques, particularly convolutional neural networks (CNNs), effectively classify cancer subtypes and grade tumor risk, achieving accuracy comparable to expert radiologists. Despite these advancements, challenges, such as the need for high-quality datasets and integration into clinical workflows, persist. Continued research on AI technologies is essential for advancing breast cancer detection and improving patient outcomes.

摘要

乳腺癌是一项重大的全球健康挑战,因此需要改进诊断和治疗策略。本综述探讨了人工智能(AI)在加强乳腺癌病理学方面的作用,重点关注风险评估、早期检测以及组织病理学和乳房X线摄影数据的分析。人工智能平台在预测乳腺癌风险以及在临床诊断前三年识别肿瘤方面显示出前景。深度学习技术,尤其是卷积神经网络(CNN),能有效地对癌症亚型进行分类并对肿瘤风险进行分级,其准确性可与专家放射科医生相媲美。尽管取得了这些进展,但诸如需要高质量数据集以及融入临床工作流程等挑战依然存在。对人工智能技术的持续研究对于推进乳腺癌检测和改善患者治疗效果至关重要。

相似文献

[1]
The Potential Diagnostic Application of Artificial Intelligence in Breast Cancer.

Curr Pharm Des. 2025-4-8

[2]
The Use of AI for Phenotype-Genotype Mapping.

Methods Mol Biol. 2025

[3]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[4]
Unveiling the power of artificial intelligence for image-based diagnosis and treatment in endodontics: An ally or adversary?

Int Endod J. 2025-2

[5]
Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review.

Surv Ophthalmol. 2024

[6]
Application of artificial intelligence in the diagnosis of malignant digestive tract tumors: focusing on opportunities and challenges in endoscopy and pathology.

J Transl Med. 2025-4-9

[7]
Artificial Intelligence in Pancreatic Imaging: A Systematic Review.

United European Gastroenterol J. 2025-2

[8]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[9]
Performance Evaluation of Artificial Intelligence Techniques in the Diagnosis of Brain Tumors: A Systematic Review and Meta-Analysis.

Cureus. 2025-7-28

[10]
A Review of Artificial Intelligence Models for Detecting Breast Arterial Calcification on Mammograms and Their Clinical Implications.

Cureus. 2025-6-27

本文引用的文献

[1]
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.

Comput Biol Med. 2025-1

[2]
Artificial Intelligence in Breast Imaging: Opportunities, Challenges, and Legal-Ethical Considerations.

Eurasian J Med. 2023-12

[3]
Ethical Considerations in the Use of Artificial Intelligence and Machine Learning in Health Care: A Comprehensive Review.

Cureus. 2024-6-15

[4]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

[5]
Early Breast Cancer Risk Assessment: Integrating Histopathology with Artificial Intelligence.

Cancers (Basel). 2024-5-23

[6]
Mammography with deep learning for breast cancer detection.

Front Oncol. 2024-2-12

[7]
The underuse of AI in the health sector: Opportunity costs, success stories, risks and recommendations.

Health Technol (Berl). 2024

[8]
Artificial Intelligence-Based Mitosis Scoring in Breast Cancer: Clinical Application.

Mod Pathol. 2024-3

[9]
Artificial intelligence for triaging of breast cancer screening mammograms and workload reduction: A meta-analysis of a deep learning software.

J Med Screen. 2024-9

[10]
Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.

Ann Oncol. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索