Behzadi Matineh, Azinfar Anahita, Alshakarchi Hawraa Ibrahim, Khazaei Yeganeh, Gataa Ibrahim Saeed, Ferns Gordon A, Naderi Hamid, Avan Amir, Fiuji Hamid, Rad Masoud Pezeshki
Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Kerbala, 56001, Iraq.
Curr Pharm Des. 2025 Apr 8. doi: 10.2174/0113816128369168250311172823.
Breast cancer poses a significant global health challenge, necessitating improved diagnostic and treatment strategies. This review explores the role of artificial intelligence (AI) in enhancing breast cancer pathology, emphasizing risk assessment, early detection, and analysis of histopathological and mammographic data. AI platforms show promise in predicting breast cancer risks and identifying tumors up to three years before clinical diagnosis. Deep learning techniques, particularly convolutional neural networks (CNNs), effectively classify cancer subtypes and grade tumor risk, achieving accuracy comparable to expert radiologists. Despite these advancements, challenges, such as the need for high-quality datasets and integration into clinical workflows, persist. Continued research on AI technologies is essential for advancing breast cancer detection and improving patient outcomes.
乳腺癌是一项重大的全球健康挑战,因此需要改进诊断和治疗策略。本综述探讨了人工智能(AI)在加强乳腺癌病理学方面的作用,重点关注风险评估、早期检测以及组织病理学和乳房X线摄影数据的分析。人工智能平台在预测乳腺癌风险以及在临床诊断前三年识别肿瘤方面显示出前景。深度学习技术,尤其是卷积神经网络(CNN),能有效地对癌症亚型进行分类并对肿瘤风险进行分级,其准确性可与专家放射科医生相媲美。尽管取得了这些进展,但诸如需要高质量数据集以及融入临床工作流程等挑战依然存在。对人工智能技术的持续研究对于推进乳腺癌检测和改善患者治疗效果至关重要。
Curr Pharm Des. 2025-4-8
Methods Mol Biol. 2025
J Med Internet Res. 2025-6-23
United European Gastroenterol J. 2025-2
Cancers (Basel). 2024-5-23
Front Oncol. 2024-2-12
Health Technol (Berl). 2024