Suppr超能文献

底物催化增强单酶扩散。

Substrate catalysis enhances single-enzyme diffusion.

机构信息

Departments of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

J Am Chem Soc. 2010 Feb 24;132(7):2110-1. doi: 10.1021/ja908773a.

Abstract

We show that diffusion of single urease enzyme molecules increases in the presence of urea in a concentration-dependent manner and calculate the force responsible for this increase. Urease diffusion measured using fluorescence correlation spectroscopy increased by 16-28% over buffer controls at urea concentrations ranging from 0.001 to 1 M. This increase was significantly attenuated when urease was inhibited with pyrocatechol, demonstrating that the increase in diffusion was the result of enzyme catalysis of urea. Local molecular pH changes as measured using the pH-dependent fluorescence lifetime of SNARF-1 conjugated to urease were not sufficient to explain the increase in diffusion. Thus, a force generated by self-electrophoresis remains the most plausible explanation. This force, evaluated using Brownian dynamics simulations, was 12 pN per reaction turnover. These measurements demonstrate force generation by a single enzyme molecule and lay the foundation for a further understanding of biological force generation and the development of enzyme-driven nanomotors.

摘要

我们证明,在存在尿素的情况下,单个脲酶分子的扩散会呈浓度依赖性增加,并计算出导致这种增加的力。使用荧光相关光谱法测量的脲酶扩散在 0.001 至 1 M 的尿素浓度范围内比缓冲对照增加了 16-28%。当脲酶被邻苯二酚抑制时,这种扩散的增加显著减弱,这表明扩散的增加是酶催化尿素的结果。使用与脲酶偶联的 SNARF-1 的 pH 依赖性荧光寿命测量的局部分子 pH 变化不足以解释扩散的增加。因此,自电泳产生的力仍然是最合理的解释。使用布朗动力学模拟评估的这种力为每个反应循环 12 pN。这些测量结果证明了单个酶分子产生力的能力,并为进一步理解生物力的产生和酶驱动纳米马达的发展奠定了基础。

相似文献

1
Substrate catalysis enhances single-enzyme diffusion.底物催化增强单酶扩散。
J Am Chem Soc. 2010 Feb 24;132(7):2110-1. doi: 10.1021/ja908773a.
3
Irreversible inhibition of jack bean urease by pyrocatechol.邻苯二酚对刀豆脲酶的不可逆抑制作用。
J Enzyme Inhib Med Chem. 2003 Oct;18(5):413-7. doi: 10.1080/1475636031000152268.
4
A Theory of Enzyme Chemotaxis: From Experiments to Modeling.酶趋化性理论:从实验到建模。
Biochemistry. 2018 Oct 30;57(43):6256-6263. doi: 10.1021/acs.biochem.8b00801. Epub 2018 Oct 12.
5
Direct Single Molecule Imaging of Enhanced Enzyme Diffusion.直接单分子成像增强酶扩散。
Phys Rev Lett. 2019 Sep 20;123(12):128101. doi: 10.1103/PhysRevLett.123.128101.
6
Powering Motion with Enzymes.用酶驱动运动。
Acc Chem Res. 2018 Oct 16;51(10):2373-2381. doi: 10.1021/acs.accounts.8b00286. Epub 2018 Sep 26.
8
10
Boric acid and boronic acids inhibition of pigeonpea urease.硼酸和硼酸酯对木豆脲酶的抑制作用。
J Enzyme Inhib Med Chem. 2006 Aug;21(4):467-70. doi: 10.1080/14756360600638147.

引用本文的文献

4
Force Generation by Enhanced Diffusion in Enzyme-Loaded Vesicles.酶负载囊泡中增强扩散产生的力
Nano Lett. 2025 Apr 9;25(14):5754-5761. doi: 10.1021/acs.nanolett.5c00306. Epub 2025 Mar 26.
8
Nonthermal fluctuations accelerate biomolecular motors.非热涨落加速生物分子马达。
Biophys Rev. 2024 Oct 2;16(5):605-612. doi: 10.1007/s12551-024-01238-x. eCollection 2024 Oct.

本文引用的文献

1
Chemo and phototactic nano/microbots.化疗和趋光纳米/微米机器人。
Faraday Discuss. 2009;143:15-27; discussion 81-93. doi: 10.1039/b900971j.
4
Anomalous diffusion of symmetric and asymmetric active colloids.对称和非对称活性胶体的反常扩散。
Phys Rev Lett. 2009 May 8;102(18):188305. doi: 10.1103/PhysRevLett.102.188305.
7
Chemotaxis of nonbiological colloidal rods.非生物胶体棒的趋化性。
Phys Rev Lett. 2007 Oct 26;99(17):178103. doi: 10.1103/PhysRevLett.99.178103.
10
Chemical locomotion.化学运动
Angew Chem Int Ed Engl. 2006 Aug 18;45(33):5420-9. doi: 10.1002/anie.200600060.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验