Suppr超能文献

甲型流感病毒M2跨膜肽在病毒包膜模拟脂质膜中的固定化:一项固态核磁共振研究。

Immobilization of the influenza A M2 transmembrane peptide in virus envelope-mimetic lipid membranes: a solid-state NMR investigation.

作者信息

Luo Wenbin, Cady Sarah D, Hong Mei

机构信息

Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.

出版信息

Biochemistry. 2009 Jul 14;48(27):6361-8. doi: 10.1021/bi900716s.

Abstract

The dynamic and structural properties of membrane proteins are intimately affected by the lipid bilayer. One property of membrane proteins is uniaxial rotational diffusion, which depends on the membrane viscosity and thickness. This rotational diffusion is readily manifested in solid-state NMR spectra as characteristic line shapes and temperature-dependent line narrowing or broadening. We show here that this whole-body uniaxial diffusion is suppressed in lipid bilayers mimicking the composition of eukaryotic cell membranes, which are rich in cholesterol and sphingomyelin. We demonstrate this membrane-induced immobilization on the transmembrane peptide of the influenza A M2 (AM2-TM) proton channel protein. At physiological temperature, AM2-TM undergoes uniaxial diffusion faster than approximately 10(5) s(-1) in DLPC, DMPC, and POPC bilayers, but the motion is slowed by 2 orders of magnitude, to <10(3) s(-1), in a cholesterol-rich virus envelope-mimetic membrane ("viral membrane"). The immobilization is manifested as near rigid-limit (2)H quadrupolar couplings and (13)C-(1)H, (15)N-(1)H, and (13)C-(15)N dipolar couplings for all labeled residues. The immobilization suppresses intermediate time scale broadening of the NMR spectra, thus allowing high-sensitivity and high-resolution spectra to be measured at physiological temperature. The conformation of the protein in the viral membrane is more homogeneous than in model PC membranes, as evidenced by the narrow (15)N lines. The immobilization of the M2 helical bundle by the membrane composition change indicates the importance of studying membrane proteins in environments as native as possible. It also suggests that eukaryote-mimetic lipid membranes may greatly facilitate structure determination of membrane proteins by solid-state NMR.

摘要

膜蛋白的动力学和结构特性受到脂质双层的密切影响。膜蛋白的一个特性是单轴旋转扩散,它取决于膜的粘度和厚度。这种旋转扩散在固态核磁共振谱中很容易表现为特征性的线形以及温度依赖性的谱线变窄或变宽。我们在此表明,在模拟富含胆固醇和鞘磷脂的真核细胞膜组成的脂质双层中,这种整体单轴扩散受到抑制。我们在甲型流感病毒M2(AM2-TM)质子通道蛋白的跨膜肽段上证实了这种膜诱导的固定化。在生理温度下,AM2-TM在二油酰磷脂酰胆碱(DLPC)、二肉豆蔻酰磷脂酰胆碱(DMPC)和1-棕榈酰-2-油酰磷脂酰胆碱(POPC)双层中进行单轴扩散的速度快于约10⁵ s⁻¹,但在富含胆固醇的模拟病毒包膜膜(“病毒膜”)中,运动速度减慢了2个数量级,降至<10³ s⁻¹。这种固定化表现为所有标记残基的近乎刚性极限的²H四极耦合以及¹³C-¹H、¹⁵N-¹H和¹³C-¹⁵N偶极耦合。这种固定化抑制了核磁共振谱的中间时间尺度展宽,从而使得能够在生理温度下测量高灵敏度和高分辨率的谱图。如¹⁵N谱线变窄所示,病毒膜中蛋白质的构象比在模型磷脂酰胆碱膜中更均匀。膜组成变化导致M2螺旋束的固定化表明,在尽可能天然的环境中研究膜蛋白非常重要。这也表明,模拟真核生物的脂质膜可能极大地促进通过固态核磁共振确定膜蛋白的结构。

相似文献

2
Effects of amantadine on the dynamics of membrane-bound influenza A M2 transmembrane peptide studied by NMR relaxation.
J Biomol NMR. 2009 Sep;45(1-2):185-96. doi: 10.1007/s10858-009-9352-9. Epub 2009 Jul 25.
3
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12946-12951. doi: 10.1073/pnas.1715127114. Epub 2017 Nov 20.
10
Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):334-41. doi: 10.1016/j.bbamem.2014.05.003. Epub 2014 May 13.

引用本文的文献

1
Ion channel structure and function of the MERS coronavirus E protein.
Sci Adv. 2025 Jul 11;11(28):eadx1788. doi: 10.1126/sciadv.adx1788. Epub 2025 Jul 9.
2
Solid-State NMR of Virus Membrane Proteins.
Acc Chem Res. 2025 Mar 18;58(6):847-860. doi: 10.1021/acs.accounts.4c00800. Epub 2025 Feb 28.
3
Activation of the Influenza B M2 Proton Channel (BM2).
Biochemistry. 2024 Nov 19;63(22):3011-3019. doi: 10.1021/acs.biochem.4c00607. Epub 2024 Nov 3.
4
Activation of the influenza B M2 proton channel (BM2).
bioRxiv. 2024 Jul 26:2024.07.26.605324. doi: 10.1101/2024.07.26.605324.
5
Conformations of influenza A M2 protein in DOPC/DOPS and E. coli native lipids and proteins.
Biophys J. 2024 Aug 20;123(16):2584-2593. doi: 10.1016/j.bpj.2024.06.025. Epub 2024 Jun 25.
7
Direct Observation of Cholesterol Dimers and Tetramers in Lipid Bilayers.
J Phys Chem B. 2021 Feb 25;125(7):1825-1837. doi: 10.1021/acs.jpcb.0c10631. Epub 2021 Feb 9.
9
Proton-Induced Conformational and Hydration Dynamics in the Influenza A M2 Channel.
J Am Chem Soc. 2019 Jul 24;141(29):11667-11676. doi: 10.1021/jacs.9b05136. Epub 2019 Jul 12.
10
X-ray Crystal Structure of the Influenza A M2 Proton Channel S31N Mutant in Two Conformational States: An Open and Shut Case.
J Am Chem Soc. 2019 Jul 24;141(29):11481-11488. doi: 10.1021/jacs.9b02196. Epub 2019 Jul 11.

本文引用的文献

1
Rotational-echo double-resonance NMR. 1989.
J Magn Reson. 2011 Dec;213(2):413-7. doi: 10.1016/j.jmr.2011.09.003.
2
Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12283-8. doi: 10.1073/pnas.0905726106. Epub 2009 Jul 9.
3
Molecular dynamics calculations suggest a conduction mechanism for the M2 proton channel from influenza A virus.
Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1069-74. doi: 10.1073/pnas.0811720106. Epub 2009 Jan 14.
5
Atom-scale molecular interactions in lipid raft mixtures.
Biochim Biophys Acta. 2009 Jan;1788(1):122-35. doi: 10.1016/j.bbamem.2008.08.018. Epub 2008 Sep 6.
6
Solid-state NMR spectroscopy applied to a chimeric potassium channel in lipid bilayers.
J Am Chem Soc. 2008 Jun 11;130(23):7427-35. doi: 10.1021/ja800190c. Epub 2008 May 14.
8
Structural basis for the function and inhibition of an influenza virus proton channel.
Nature. 2008 Jan 31;451(7178):596-9. doi: 10.1038/nature06528.
9
Structure and mechanism of the M2 proton channel of influenza A virus.
Nature. 2008 Jan 31;451(7178):591-5. doi: 10.1038/nature06531.
10
Ion channels: coughing up flu's proton channels.
Nature. 2008 Jan 31;451(7178):532-3. doi: 10.1038/451532a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验