Suppr超能文献

制备性毛细管气相色谱(pcGC)、自动结构生成和致突变性预测在改进污染地下水中遗传毒性物质的定向分析中的应用。

Application of preparative capillary gas chromatography (pcGC), automated structure generation and mutagenicity prediction to improve effect-directed analysis of genotoxicants in a contaminated groundwater.

机构信息

Department of Effect-Directed Analysis, UFZ, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany.

出版信息

Environ Sci Pollut Res Int. 2010 May;17(4):885-97. doi: 10.1007/s11356-009-0286-2. Epub 2010 Jan 30.

Abstract

BACKGROUND, AIM AND SCOPE: The importance of groundwater for human life cannot be overemphasised. Besides fulfilling essential ecological functions, it is a major source of drinking water. However, in the industrial area of Bitterfeld, it is contaminated with a multitude of harmful chemicals, including genotoxicants. Therefore, recently developed methodologies including preparative capillary gas chromatography (pcGC), MOLGEN-MS structure generation and mutagenicity prediction were applied within effect-directed analysis (EDA) to reduce sample complexity and to identify candidate mutagens in the samples. A major focus was put on the added value of these tools compared to conventional EDA combining reversed-phase liquid chromatography (RP-LC) followed by GC/MS analysis and MS library search.

MATERIALS AND METHODS

We combined genotoxicity testing with umuC and RP-LC with pcGC fractionation to isolate genotoxic compounds from a contaminated groundwater sample. Spectral library information from the NIST05 database was combined with a computer-based structure generation tool called MOLGEN-MS for structure elucidation of unknowns. Finally, we applied a computer model for mutagenicity prediction (ChemProp) to identify candidate mutagens and genotoxicants.

RESULTS AND DISCUSSION

A total of 62 components were tentatively identified in genotoxic fractions. Ten of these components were predicted to be potentially mutagenic, whilst 2,4,6-trichlorophenol, 2,4-dichloro-6-methylphenol and 4-chlorobenzoic acid were confirmed as genotoxicants.

CONCLUSIONS AND PERSPECTIVES

The results suggest pcGC as a high-resolution fractionation tool and MOLGEN-MS to improve structure elucidation, whilst mutagenicity prediction failed in our study to predict identified genotoxicants. Genotoxicity, mutagenicity and carcinogenicity caused by chemicals are complex processes, and prediction from chemical structure still appears to be quite difficult. Progress in this field would significantly support EDA and risk assessment of environmental mixtures.

摘要

背景、目的和范围:地下水对人类生活的重要性怎么强调都不为过。除了履行基本的生态功能外,它还是饮用水的主要来源。然而,在比特费尔德的工业区,地下水受到了多种有害化学物质的污染,包括遗传毒性物质。因此,最近开发的方法,包括制备性毛细管气相色谱(pcGC)、MOLGEN-MS 结构生成和致突变性预测,被应用于效应导向分析(EDA)中,以降低样品的复杂性,并识别样品中的候选致突变物。重点是将这些工具与传统的 EDA 相结合,包括反相液相色谱(RP-LC)后接气相色谱/质谱分析和 MS 库搜索,以比较这些工具的附加值。

材料和方法

我们将遗传毒性测试与 umuC 结合,并用 RP-LC 与 pcGC 分级分离,从受污染的地下水中分离出遗传毒性化合物。从 NIST05 数据库获得的光谱库信息与一种称为 MOLGEN-MS 的基于计算机的结构生成工具相结合,用于鉴定未知物的结构。最后,我们应用了一种用于致突变性预测的计算机模型(ChemProp),以鉴定候选致突变物和遗传毒性物质。

结果与讨论

在遗传毒性馏分中总共暂定鉴定了 62 个成分。其中 10 个成分被预测为潜在的致突变物,而 2,4,6-三氯苯酚、2,4-二氯-6-甲基苯酚和 4-氯苯甲酸则被确认为遗传毒性物质。

结论和展望

结果表明,pcGC 是一种高分辨率的分级分离工具,MOLGEN-MS 可提高结构解析能力,而致突变性预测在本研究中未能预测鉴定出的遗传毒性物质。化学物质引起的遗传毒性、致突变性和致癌性是复杂的过程,从化学结构预测仍然相当困难。该领域的进展将显著支持环境混合物的 EDA 和风险评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验