Suppr超能文献

利用系统生物学方法构建功能性微血管网络。

Harnessing systems biology approaches to engineer functional microvascular networks.

机构信息

Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, Pennsylvania, USA.

出版信息

Tissue Eng Part B Rev. 2010 Jun;16(3):361-70. doi: 10.1089/ten.TEB.2009.0611.

Abstract

Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a continued growth in the understanding of signaling pathways involved in the formation and maturation of new blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascularization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of whole networks of genes may lead to greater insight into the underlying physiology since the coordinated response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a variety of experimental sources (-omics) and analyzes how the interactions of the system components can give rise to the function and behavior of that system. This review focuses on how systems biology approaches have been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid novel pro-angiogenic drug discovery.

摘要

微血管重构是一个复杂的过程,包括许多细胞类型和分子信号。尽管人们对参与新血管形成和成熟的信号通路的理解不断深入,但大约一半进入临床试验的化合物都会失败,从而导致大量时间、金钱和资源的损失。迄今为止,大多数促血管生成的临床试验都集中在通过单一生长因子或基因的传递来增加新血管生成。或者,关注整个基因网络的协同调节可能会更深入地了解潜在的生理学,因为协调的反应大于其各部分的总和。系统生物学提供了一个全面的血管生成和血管生成的网络视图,这可能使我们能够预测药物靶点,以及激活这些靶点是否会产生预期的结果。系统生物学整合了来自各种实验源的复杂生物数据(组学),并分析系统组件的相互作用如何产生该系统的功能和行为。这篇综述重点介绍了系统生物学方法如何应用于微血管生长和重塑,以及网络分析工具如何用于帮助新的促血管生成药物发现。

相似文献

2
Cell-microenvironment interactions and architectures in microvascular systems.微血管系统中的细胞-微环境相互作用及结构
Biotechnol Adv. 2016 Nov 1;34(6):1113-1130. doi: 10.1016/j.biotechadv.2016.07.002. Epub 2016 Jul 11.
5
Cellular Based Strategies for Microvascular Engineering.基于细胞的微血管工程策略。
Stem Cell Rev Rep. 2019 Apr;15(2):218-240. doi: 10.1007/s12015-019-09877-4.
6
Systems biology of the microvasculature.微脉管系统的系统生物学
Integr Biol (Camb). 2015 May;7(5):498-512. doi: 10.1039/c4ib00296b. Epub 2015 Apr 2.
8
Determinants of microvascular network topologies in implanted neovasculatures.植入新生血管中微血管网络拓扑结构的决定因素。
Arterioscler Thromb Vasc Biol. 2012 Jan;32(1):5-14. doi: 10.1161/ATVBAHA.111.238725. Epub 2011 Nov 3.
9
Inosculation: connecting the life-sustaining pipelines.吻合:连接维持生命的管道。
Tissue Eng Part B Rev. 2009 Dec;15(4):455-65. doi: 10.1089/ten.TEB.2009.0252.

本文引用的文献

2
Cancer systems biology: a network modeling perspective.癌症系统生物学:网络建模视角。
Carcinogenesis. 2010 Jan;31(1):2-8. doi: 10.1093/carcin/bgp261. Epub 2009 Oct 27.
6
Multiscale models of angiogenesis.血管生成的多尺度模型。
IEEE Eng Med Biol Mag. 2009 Mar-Apr;28(2):14-31. doi: 10.1109/MEMB.2009.931791.
7
Vascularization--the conduit to viable engineered tissues.血管化--可存活工程组织的通道。
Tissue Eng Part B Rev. 2009 Jun;15(2):159-69. doi: 10.1089/ten.teb.2008.0193.
10
Microcirculation and the physiome projects.微循环与生理组计划。
Microcirculation. 2008 Nov;15(8):835-9. doi: 10.1080/10739680802388906.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验