Division of Experimental Orthopaedics, Orthopaedic University Hospital of Heidelberg, Schlierbacher Landstrasse 200a, D-69118 Heidelberg, Germany.
Acta Biomater. 2010 Aug;6(8):3292-301. doi: 10.1016/j.actbio.2010.01.037. Epub 2010 Feb 1.
New techniques to heal bone defects include the combination of bone substitute materials with mesenchymal stem cells (MSC). To find solutions not hampered by low material resorbability or high donor variability of human MSC, the potency of such composites is usually evaluated by heterotopic bone formation assays in immunocompromised animals. The aim of this study was to investigate whether resorbable phase-pure beta-tricalcium-phosphate (beta-TCP) could support heterotopic bone formation by MSC comparable to partially resorbable hydroxyapatite/tricalcium-phosphate (HA/TCP). Furthermore, in light of disappointing results with osteogenic in vitro priming of MSC, we tested whether chondrogenic pre-induction of constructs may allow for enhanced bone formation by triggering the endochondral pathway. beta-TCP granules of three different sizes and HA/TCP were seeded with MSC and transplanted subcutaneously into immunocompromised mice either immediately or after a chondrogenic pre-induction for 6 weeks. After 8 weeks, explants were analysed by histology. beta-TCP seeded with unprimed MSC revealed intramembranous bone formation without haematopoietic marrow with 3.8-fold more bone formed with granules smaller than 0.7 mm than with 0.7-1.4mm particles (p< or =0.018). Chondrogenic pre-induction of beta-TCP/MSC composites resulted in collagen type II and proteoglycan-rich cartilage-like tissue which, after transplantation, underwent endochondral ossification, yielding ectopic bone produced by human cells while haematopoietic marrow was derived from the mouse. Transdifferentiation of MSC-derived chondrocytes to osteoblasts or direct osteogenesis of cartilage-resident MSC is postulated to explain the human origin of new bone. In conclusion, beta-TCP was significantly more osteo-permissive (p=0.004) than HA/TCP for human MSC, and chondrogenic priming of beta-TCP/MSC represented a superior approach capable of supporting full bone formation, including marrow organization.
用于治疗骨缺损的新技术包括将骨替代材料与间充质干细胞(MSC)相结合。为了寻找不受材料吸收能力低或人 MSC 供体变异性大影响的解决方案,通常在免疫功能低下的动物中通过异位骨形成测定来评估此类复合材料的功效。本研究的目的是研究可吸收相纯β-磷酸三钙(β-TCP)是否可以支持 MSC 的异位骨形成,与部分可吸收的羟磷灰石/磷酸三钙(HA/TCP)相当。此外,鉴于 MSC 成骨体外预诱导的结果令人失望,我们测试了构建物的软骨诱导前诱导是否可以通过触发软骨内途径来增强骨形成。将 MSC 接种到三种不同大小的β-TCP 颗粒和 HA/TCP 颗粒上,并立即或在软骨诱导前 6 周后皮下移植到免疫功能低下的小鼠中。8 周后,通过组织学分析进行分析。未预诱导的 MSC 接种的β-TCP 颗粒显示出膜内骨形成,没有造血骨髓,粒径小于 0.7mm 的颗粒形成的骨是粒径为 0.7-1.4mm 颗粒的 3.8 倍(p<或=0.018)。β-TCP/MSC 复合材料的软骨诱导前诱导导致富含 II 型胶原和蛋白聚糖的软骨样组织,在移植后,经历软骨内骨化,产生由人细胞产生的异位骨,而造血骨髓来自小鼠。推测 MSC 衍生的软骨细胞向成骨细胞的转分化或软骨内驻留 MSC 的直接成骨解释了新骨的人源。总之,β-TCP 比 HA/TCP 对人 MSC 更具成骨性(p=0.004),β-TCP/MSC 的软骨诱导前诱导是一种优越的方法,能够支持包括骨髓组织在内的完全骨形成。