Papantoniou Ioannis, Nilsson Hall Gabriella, Loverdou Niki, Lesage Raphaelle, Herpelinck Tim, Mendes Luis, Geris Liesbet
Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), Stadiou street, 26504 Patras, Greece; Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
Adv Drug Deliv Rev. 2021 Feb;169:22-39. doi: 10.1016/j.addr.2020.11.012. Epub 2020 Dec 5.
A decade after the term developmental engineering (DE) was coined to indicate the use of developmental processes as blueprints for the design and development of engineered living implants, a myriad of proof-of-concept studies demonstrate the potential of this approach in small animal models. This review provides an overview of DE work, focusing on applications in bone regeneration. Enabling technologies allow to quantify the distance between in vitro processes and their developmental counterpart, as well as to design strategies to reduce that distance. By embedding Nature's robust mechanisms of action in engineered constructs, predictive large animal data and subsequent positive clinical outcomes can be gradually achieved. To this end, the development of next generation biofabrication technologies should provide the necessary scale and precision for robust living bone implant biomanufacturing.
在“发育工程”(DE)一词被创造出来以表明将发育过程用作工程化活体植入物设计和开发的蓝图十年后,无数的概念验证研究证明了这种方法在小动物模型中的潜力。本综述概述了发育工程的工作,重点是在骨再生中的应用。使能技术能够量化体外过程与其发育对应过程之间的距离,并设计减少该距离的策略。通过将自然界强大的作用机制嵌入工程构建体中,可以逐步获得可预测的大型动物数据以及随后积极的临床结果。为此,下一代生物制造技术的发展应为强大的活体骨植入物生物制造提供必要的规模和精度。