Suppr超能文献

光依赖的磁罗盘方向感在两栖动物和昆虫中:候选受体和候选分子机制。

Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms.

机构信息

Department of Biological Sciences, Virginia Polytechnic Institute and State University, Derring Hall, Blacksburg, VA 24061, USA.

出版信息

J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S241-56. doi: 10.1098/rsif.2009.0459.focus. Epub 2010 Feb 2.

Abstract

Magnetic compass orientation by amphibians, and some insects, is mediated by a light-dependent magnetoreception mechanism. Cryptochrome photopigments, best known for their role in circadian rhythms, are proposed to mediate such responses. In this paper, we explore light-dependent properties of magnetic sensing at three levels: (i) behavioural (wavelength-dependent effects of light on magnetic compass orientation), (ii) physiological (photoreceptors/photopigment systems with properties suggesting a role in magnetoreception), and (iii) molecular (cryptochrome-based and non-cryptochrome-based signalling pathways that are compatible with behavioural responses). Our goal is to identify photoreceptors and signalling pathways that are likely to play a specialized role in magnetoreception in order to definitively answer the question of whether the effects of light on magnetic compass orientation are mediated by a light-dependent magnetoreception mechanism, or instead are due to input from a non-light-dependent (e.g. magnetite-based) magnetoreception mechanism that secondarily interacts with other light-dependent processes.

摘要

两栖动物和一些昆虫通过光依赖的磁受体机制来进行磁罗盘定位。隐花色素光色素因其在昼夜节律中的作用而广为人知,据推测它们介导了这种反应。在本文中,我们从三个层面探索了磁感觉的光依赖性特性:(i)行为层面(光对磁罗盘定位的波长依赖性影响)、(ii)生理层面(具有暗示在磁受体中作用的光受体/光色素系统)和(iii)分子层面(与行为反应相容的基于隐花色素和非隐花色素的信号通路)。我们的目标是确定可能在磁受体中发挥专门作用的光受体和信号通路,以便明确回答以下问题:光对磁罗盘定位的影响是否由光依赖的磁受体机制介导,或者是否是由于来自非光依赖(例如基于磁铁矿)的磁受体机制的输入引起的,该机制会与其他光依赖过程发生二次相互作用。

相似文献

1
Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms.
J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S241-56. doi: 10.1098/rsif.2009.0459.focus. Epub 2010 Feb 2.
2
Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know?
J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S147-62. doi: 10.1098/rsif.2009.0411.focus. Epub 2009 Nov 11.
3
Magnetoreception in eusocial insects: an update.
J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S207-25. doi: 10.1098/rsif.2009.0526.focus. Epub 2010 Jan 27.
4
Zebra finches have a light-dependent magnetic compass similar to migratory birds.
J Exp Biol. 2017 Apr 1;220(Pt 7):1202-1209. doi: 10.1242/jeb.148098.
5
Light-dependent magnetic compass in Iberian green frog tadpoles.
Naturwissenschaften. 2010 Dec;97(12):1077-88. doi: 10.1007/s00114-010-0730-7. Epub 2010 Oct 27.
7
Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
J R Soc Interface. 2016 May;13(118). doi: 10.1098/rsif.2015.1010.
9
Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.
Planta. 2007 Feb;225(3):615-24. doi: 10.1007/s00425-006-0383-0. Epub 2006 Sep 6.
10
Lateralization of magnetic compass orientation in pigeons.
J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S235-40. doi: 10.1098/rsif.2009.0436.focus. Epub 2010 Jan 6.

引用本文的文献

2
No evidence for magnetic field effects on the behaviour of Drosophila.
Nature. 2023 Aug;620(7974):595-599. doi: 10.1038/s41586-023-06397-7. Epub 2023 Aug 9.
3
Genetic analysis of cryptochrome in insect magnetosensitivity.
Front Physiol. 2022 Aug 10;13:928416. doi: 10.3389/fphys.2022.928416. eCollection 2022.
4
Magnetic field effects in biology from the perspective of the radical pair mechanism.
J R Soc Interface. 2022 Aug;19(193):20220325. doi: 10.1098/rsif.2022.0325. Epub 2022 Aug 3.
5
Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism.
Sci Rep. 2022 May 30;12(1):8997. doi: 10.1038/s41598-022-12460-6.
6
Why is it so difficult to study magnetic compass orientation in murine rodents?
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):197-212. doi: 10.1007/s00359-021-01532-z. Epub 2022 Jan 30.
7
Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor.
Sci Rep. 2021 Jun 16;11(1):12683. doi: 10.1038/s41598-021-92056-8.
8
Turning preference in dogs: North attracts while south repels.
PLoS One. 2021 Jan 28;16(1):e0245940. doi: 10.1371/journal.pone.0245940. eCollection 2021.
9
Scientific Opinion on the state of the science on pesticide risk assessment for amphibians and reptiles.
EFSA J. 2018 Feb 23;16(2):e05125. doi: 10.2903/j.efsa.2018.5125. eCollection 2018 Feb.
10
Multimodal interactions in insect navigation.
Anim Cogn. 2020 Nov;23(6):1129-1141. doi: 10.1007/s10071-020-01383-2. Epub 2020 Apr 22.

本文引用的文献

1
Structure and function of the vertebrate magnetic sense.
Nature. 1997 Nov 27;390(6658):371-6. doi: 10.1038/37057.
2
Visual but not trigeminal mediation of magnetic compass information in a migratory bird.
Nature. 2009 Oct 29;461(7268):1274-7. doi: 10.1038/nature08528.
3
Directional orientation of birds by the magnetic field under different light conditions.
J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S163-77. doi: 10.1098/rsif.2009.0367.focus. Epub 2009 Oct 28.
4
Light-dependent orientation responses in animals can be explained by a model of compass cue integration.
J Theor Biol. 2010 Jan 7;262(1):129-41. doi: 10.1016/j.jtbi.2009.09.005. Epub 2009 Sep 18.
5
Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye.
J Exp Biol. 2009 Sep 15;212(18):2918-24. doi: 10.1242/jeb.032987.
6
New roles of flavoproteins in molecular cell biology: blue-light active flavoproteins studied by electron paramagnetic resonance.
FEBS J. 2009 Aug;276(16):4290-303. doi: 10.1111/j.1742-4658.2009.07141.x. Epub 2009 Jul 14.
7
Magnetoreception through cryptochrome may involve superoxide.
Biophys J. 2009 Jun 17;96(12):4804-13. doi: 10.1016/j.bpj.2009.03.048.
8
Structural biology of DNA photolyases and cryptochromes.
Curr Opin Struct Biol. 2009 Jun;19(3):277-85. doi: 10.1016/j.sbi.2009.05.003. Epub 2009 May 30.
9
Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus tauri.
J Photochem Photobiol B. 2009 Jul 17;96(1):38-48. doi: 10.1016/j.jphotobiol.2009.04.003. Epub 2009 Apr 14.
10
Magnetic compass of birds is based on a molecule with optimal directional sensitivity.
Biophys J. 2009 Apr 22;96(8):3451-7. doi: 10.1016/j.bpj.2008.11.072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验