Suppr超能文献

利用简单加权平均插补法在 DREAM3 信号反应挑战中取得成功:系统生物学中社区范围实验的经验教训。

Success in the DREAM3 signaling response challenge using simple weighted-average imputation: lessons for community-wide experiments in systems biology.

机构信息

Genome Institute of Singapore, Singapore.

出版信息

PLoS One. 2010 Jan 26;5(1):e8417. doi: 10.1371/journal.pone.0008417.

Abstract

Our group produced the best predictions overall in the DREAM3 signaling response challenge, being tops by a substantial margin in the cytokine sub-challenge and nearly tied for best in the phosphoprotein sub-challenge. We achieved this success using a simple interpolation strategy. For each combination of a stimulus and inhibitor for which predictions were required, we had noted there were six other datasets using the same stimulus (but different inhibitor treatments) and six other datasets using the same inhibitor (but different stimuli). Therefore, for each treatment combination for which values were to be predicted, we calculated rank correlations for the data that were in common between the treatment combination and each of the 12 related combinations. The data from the 12 related combinations were then used to calculate missing values, weighting the contributions from each experiment based on the rank correlation coefficients. The success of this simple method suggests that the missing data were largely over-determined by similarities in the treatments. We offer some thoughts on the current state and future development of DREAM that are based on our success in this challenge, our success in the earlier DREAM2 transcription factor target challenge, and our experience as the data provider for the gene expression challenge in DREAM3.

摘要

我们的团队在 DREAM3 信号响应挑战赛中取得了总体上最佳的预测结果,在细胞因子子挑战中以相当大的优势位居榜首,在磷酸化蛋白子挑战中也几乎并列第一。我们使用简单的插值策略取得了这一成功。对于需要预测的每个刺激物和抑制剂组合,我们注意到还有六个其他数据集使用相同的刺激物(但不同的抑制剂处理),还有六个其他数据集使用相同的抑制剂(但不同的刺激物)。因此,对于要预测值的每个处理组合,我们计算了处理组合与 12 个相关组合中的每个组合之间的公共数据的秩相关系数。然后,使用 12 个相关组合的数据来计算缺失值,根据秩相关系数为每个实验的贡献进行加权。这种简单方法的成功表明,缺失数据在很大程度上是由处理方式的相似性所决定的。我们根据我们在这一挑战中的成功、在更早的 DREAM2 转录因子靶标挑战中的成功以及我们作为 DREAM3 基因表达挑战的数据提供者的经验,提供了一些关于 DREAM 现状和未来发展的想法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c13/2811179/e7a185de07af/pone.0008417.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验