Suppr超能文献

动力蛋白-微管马达为蚊子听觉器官中的主动振动和放大提供动力。

The dynein-tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito.

机构信息

School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.

出版信息

Proc Biol Sci. 2010 Jun 7;277(1688):1761-9. doi: 10.1098/rspb.2009.2355. Epub 2010 Feb 3.

Abstract

The design principles and specific proteins of the dynein-tubulin motor, which powers the flagella and cilia of eukaryotes, have been conserved throughout the evolution of life from algae to humans. Cilia and flagella can support both motile and sensory functions independently, or sometimes in parallel to each other. In this paper we show that this dual sensory-motile role of eukaryotic cilia is preserved in the most sensitive of all invertebrate hearing organs, the Johnston's organ of the mosquito. The Johnston's organ displays spontaneous oscillations, which have been identified as being a characteristic of amplification in the ears of mosquitoes and Drosophila. In the auditory organs of Drosophila and vertebrates, the molecular basis of amplification has been attributed to the gating and adaptation of the mechanoelectrical transducer channels themselves. On the basis of their temperature-dependence and sensitivity to colchicine, we attribute the molecular basis of spontaneous oscillations by the Johnston's organ of the mosquito Culex quinquefasciatus, to the dynein-tubulin motor of the ciliated sensillae. If, as has been claimed for insect and vertebrate hearing organs, spontaneous oscillations epitomize amplification, then in the mosquito ear, this process is independent of mechanotransduction.

摘要

从藻类到人类,驱动真核生物鞭毛和纤毛的动力蛋白-微管的设计原理和特定蛋白质在生命进化过程中是保守的。纤毛和鞭毛可以独立地支持运动和感觉功能,或者有时可以彼此平行。在本文中,我们表明,真核纤毛的这种双重感觉-运动功能在所有无脊椎动物听觉器官中最敏感的蚊子的约翰斯顿器官中得到了保留。约翰斯顿器官显示自发振荡,这已被确定为蚊子和果蝇耳朵放大的特征。在果蝇和脊椎动物的听觉器官中,放大的分子基础归因于机械电换能通道本身的门控和适应。基于它们的温度依赖性和对秋水仙素的敏感性,我们将蚊子 Culex quinquefasciatus 的约翰斯顿器官的自发振荡的分子基础归因于纤毛感受器的动力蛋白-微管。如果像昆虫和脊椎动物听觉器官所声称的那样,自发振荡是放大的缩影,那么在蚊子的耳朵中,这个过程独立于机械转导。

相似文献

1
The dynein-tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito.
Proc Biol Sci. 2010 Jun 7;277(1688):1761-9. doi: 10.1098/rspb.2009.2355. Epub 2010 Feb 3.
2
Hearing in Drosophila requires TilB, a conserved protein associated with ciliary motility.
Genetics. 2010 May;185(1):177-88. doi: 10.1534/genetics.110.114009. Epub 2010 Mar 9.
3
Development of Johnston's organ in Drosophila.
Int J Dev Biol. 2007;51(6-7):679-87. doi: 10.1387/ijdb.072364de.
4
Sex and species specific hearing mechanisms in mosquito flagellar ears.
Nat Commun. 2018 Sep 25;9(1):3911. doi: 10.1038/s41467-018-06388-7.
6
Nanometre-range acoustic sensitivity in male and female mosquitoes.
Proc Biol Sci. 2000 Mar 7;267(1442):453-7. doi: 10.1098/rspb.2000.1021.
7
Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ.
Microsc Res Tech. 2004 Apr 15;63(6):388-99. doi: 10.1002/jemt.20053.
8
Active auditory mechanics in mosquitoes.
Proc Biol Sci. 2001 Feb 22;268(1465):333-9. doi: 10.1098/rspb.2000.1376.
9
The evolution of eukaryotic cilia and flagella as motile and sensory organelles.
Adv Exp Med Biol. 2007;607:130-40. doi: 10.1007/978-0-387-74021-8_11.
10
Mathematical modelling of the active hearing process in mosquitoes.
J R Soc Interface. 2010 Jan 6;7(42):105-22. doi: 10.1098/rsif.2009.0091. Epub 2009 May 15.

引用本文的文献

1
High-Pass Noise Suppression in the Mosquito Auditory System.
Insects. 2025 Aug 14;16(8):840. doi: 10.3390/insects16080840.
2
Diversity and complexity of auditory representation in the hearing systems of mosquitoes.
Sci Adv. 2025 Jun 6;11(23):eads2689. doi: 10.1126/sciadv.ads2689. Epub 2025 Jun 4.
3
Mosquito sound communication: are male swarms loud enough to attract females?
J R Soc Interface. 2021 Apr;18(177):20210121. doi: 10.1098/rsif.2021.0121. Epub 2021 Apr 14.
4
Temperature-Dependent Activity of Motor Proteins: Energetics and Their Implications for Collective Behavior.
Front Cell Dev Biol. 2021 Feb 26;9:610899. doi: 10.3389/fcell.2021.610899. eCollection 2021.
5
Axonemal Dynein DNAH5 is Required for Sound Sensation in Drosophila Larvae.
Neurosci Bull. 2021 Apr;37(4):523-534. doi: 10.1007/s12264-021-00631-w. Epub 2021 Feb 11.
6
Olfactory systems across mosquito species.
Cell Tissue Res. 2021 Jan;383(1):75-90. doi: 10.1007/s00441-020-03407-2. Epub 2021 Jan 21.
7
Temperature-dependent activity of kinesins is regulable.
Biochem Biophys Res Commun. 2020 Jul 30;528(3):528-530. doi: 10.1016/j.bbrc.2020.05.157. Epub 2020 Jun 4.
8
Masking of an auditory behaviour reveals how male mosquitoes use distortion to detect females.
Proc Biol Sci. 2018 Jan 31;285(1871). doi: 10.1098/rspb.2017.1862.
10
Gating of Acoustic Transducer Channels Is Shaped by Biomechanical Filter Processes.
J Neurosci. 2016 Feb 24;36(8):2377-82. doi: 10.1523/JNEUROSCI.3948-15.2016.

本文引用的文献

1
Transducer-based force generation explains active process in Drosophila hearing.
Curr Biol. 2008 Sep 23;18(18):1365-72. doi: 10.1016/j.cub.2008.07.095. Epub 2008 Sep 11.
2
The evolution of eukaryotic cilia and flagella as motile and sensory organelles.
Adv Exp Med Biol. 2007;607:130-40. doi: 10.1007/978-0-387-74021-8_11.
3
Mechanical signatures of transducer gating in the Drosophila ear.
Curr Biol. 2007 Jun 5;17(11):1000-6. doi: 10.1016/j.cub.2007.05.004. Epub 2007 May 24.
4
Regulation of mammalian ciliary beating.
Annu Rev Physiol. 2007;69:401-22. doi: 10.1146/annurev.physiol.69.040705.141253.
5
Flying in tune: sexual recognition in mosquitoes.
Curr Biol. 2006 Jul 11;16(13):1311-6. doi: 10.1016/j.cub.2006.05.053.
6
Effects of temperature, ionic strength and pH on the function of skeletal muscle myosin from a eurythermal fish, Fundulus heteroclitus.
J Muscle Res Cell Motil. 2005;26(4-5):191-7. doi: 10.1007/s10974-005-9010-0. Epub 2005 Sep 23.
7
A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea.
J Neurosci Methods. 2005 Oct 30;148(2):122-9. doi: 10.1016/j.jneumeth.2005.04.014. Epub 2005 Jun 22.
8
Power gain exhibited by motile mechanosensory neurons in Drosophila ears.
Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):325-30. doi: 10.1073/pnas.0405741102. Epub 2004 Dec 28.
9
Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity.
Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12195-200. doi: 10.1073/pnas.0403020101. Epub 2004 Aug 9.
10
Ultrastructure of the insect ear.
Nature. 1958 Mar 1;181(4609):618. doi: 10.1038/181618a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验