Suppr超能文献

动力蛋白-微管马达为蚊子听觉器官中的主动振动和放大提供动力。

The dynein-tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito.

机构信息

School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.

出版信息

Proc Biol Sci. 2010 Jun 7;277(1688):1761-9. doi: 10.1098/rspb.2009.2355. Epub 2010 Feb 3.

Abstract

The design principles and specific proteins of the dynein-tubulin motor, which powers the flagella and cilia of eukaryotes, have been conserved throughout the evolution of life from algae to humans. Cilia and flagella can support both motile and sensory functions independently, or sometimes in parallel to each other. In this paper we show that this dual sensory-motile role of eukaryotic cilia is preserved in the most sensitive of all invertebrate hearing organs, the Johnston's organ of the mosquito. The Johnston's organ displays spontaneous oscillations, which have been identified as being a characteristic of amplification in the ears of mosquitoes and Drosophila. In the auditory organs of Drosophila and vertebrates, the molecular basis of amplification has been attributed to the gating and adaptation of the mechanoelectrical transducer channels themselves. On the basis of their temperature-dependence and sensitivity to colchicine, we attribute the molecular basis of spontaneous oscillations by the Johnston's organ of the mosquito Culex quinquefasciatus, to the dynein-tubulin motor of the ciliated sensillae. If, as has been claimed for insect and vertebrate hearing organs, spontaneous oscillations epitomize amplification, then in the mosquito ear, this process is independent of mechanotransduction.

摘要

从藻类到人类,驱动真核生物鞭毛和纤毛的动力蛋白-微管的设计原理和特定蛋白质在生命进化过程中是保守的。纤毛和鞭毛可以独立地支持运动和感觉功能,或者有时可以彼此平行。在本文中,我们表明,真核纤毛的这种双重感觉-运动功能在所有无脊椎动物听觉器官中最敏感的蚊子的约翰斯顿器官中得到了保留。约翰斯顿器官显示自发振荡,这已被确定为蚊子和果蝇耳朵放大的特征。在果蝇和脊椎动物的听觉器官中,放大的分子基础归因于机械电换能通道本身的门控和适应。基于它们的温度依赖性和对秋水仙素的敏感性,我们将蚊子 Culex quinquefasciatus 的约翰斯顿器官的自发振荡的分子基础归因于纤毛感受器的动力蛋白-微管。如果像昆虫和脊椎动物听觉器官所声称的那样,自发振荡是放大的缩影,那么在蚊子的耳朵中,这个过程独立于机械转导。

相似文献

3
Development of Johnston's organ in Drosophila.果蝇中江氏器的发育
Int J Dev Biol. 2007;51(6-7):679-87. doi: 10.1387/ijdb.072364de.
6
Nanometre-range acoustic sensitivity in male and female mosquitoes.雌雄蚊子的纳米级声学敏感性
Proc Biol Sci. 2000 Mar 7;267(1442):453-7. doi: 10.1098/rspb.2000.1021.
8
Active auditory mechanics in mosquitoes.蚊子的主动听觉机制
Proc Biol Sci. 2001 Feb 22;268(1465):333-9. doi: 10.1098/rspb.2000.1376.
10
Mathematical modelling of the active hearing process in mosquitoes.蚊子主动听觉过程的数学建模。
J R Soc Interface. 2010 Jan 6;7(42):105-22. doi: 10.1098/rsif.2009.0091. Epub 2009 May 15.

引用本文的文献

6
Olfactory systems across mosquito species.蚊子的嗅觉系统。
Cell Tissue Res. 2021 Jan;383(1):75-90. doi: 10.1007/s00441-020-03407-2. Epub 2021 Jan 21.
7
Temperature-dependent activity of kinesins is regulable.温度依赖性的驱动蛋白活性是可调节的。
Biochem Biophys Res Commun. 2020 Jul 30;528(3):528-530. doi: 10.1016/j.bbrc.2020.05.157. Epub 2020 Jun 4.

本文引用的文献

3
Mechanical signatures of transducer gating in the Drosophila ear.果蝇耳朵中换能器门控的机械信号特征
Curr Biol. 2007 Jun 5;17(11):1000-6. doi: 10.1016/j.cub.2007.05.004. Epub 2007 May 24.
4
Regulation of mammalian ciliary beating.哺乳动物纤毛摆动的调节。
Annu Rev Physiol. 2007;69:401-22. doi: 10.1146/annurev.physiol.69.040705.141253.
5
Flying in tune: sexual recognition in mosquitoes.合拍飞行:蚊子的性别识别
Curr Biol. 2006 Jul 11;16(13):1311-6. doi: 10.1016/j.cub.2006.05.053.
8
Power gain exhibited by motile mechanosensory neurons in Drosophila ears.果蝇耳朵中活动的机械感觉神经元所表现出的功率增益。
Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):325-30. doi: 10.1073/pnas.0405741102. Epub 2004 Dec 28.
10
Ultrastructure of the insect ear.昆虫耳朵的超微结构。
Nature. 1958 Mar 1;181(4609):618. doi: 10.1038/181618a0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验