Suppr超能文献

MS2和PP7外壳融合蛋白的联合使用表明,在K-SAM外显子剪接控制中,TIA-1比hnRNP A1起主导作用。

Combined use of MS2 and PP7 coat fusions shows that TIA-1 dominates hnRNP A1 for K-SAM exon splicing control.

作者信息

Gesnel Marie-Claude, Del Gatto-Konczak Fabienne, Breathnach Richard

机构信息

INSERM, U892, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France.

出版信息

J Biomed Biotechnol. 2009;2009:104853. doi: 10.1155/2009/104853. Epub 2010 Jan 14.

Abstract

Splicing of the FGFR2 K-SAM exon is repressed by hnRNP A1 bound to the exon and activated by TIA-1 bound to the downstream intron. Both proteins are expressed similarly by cells whether they splice the exon or not, so it is important to know which one is dominant. To answer this question, we used bacteriophage PP7 and bacteriophage MS2 coat fusions to tether hnRNP A1 and TIA-1 to distinct sites on the same pre-mRNA molecule. hnRNP A1 fused to one coat protein was tethered to a K-SAM exon containing the corresponding coat protein's binding site. TIA-1 fused to the other coat protein was tethered to the downstream intron containing that coat protein's binding site. This led to efficient K-SAM exon splicing. Our results show that TIA-1 is dominant for K-SAM exon splicing control and validate the combined use of PP7 and MS2 coat proteins for studying posttranscriptional events.

摘要

与该外显子结合的hnRNP A1会抑制FGFR2 K-SAM外显子的剪接,而与下游内含子结合的TIA-1则会激活它。无论细胞是否剪接该外显子,这两种蛋白的表达都相似,因此了解哪种蛋白起主导作用很重要。为了回答这个问题,我们使用噬菌体PP7和噬菌体MS2外壳融合蛋白,将hnRNP A1和TIA-1拴系到同一前体mRNA分子的不同位点上。与一种外壳蛋白融合的hnRNP A1被拴系到一个含有相应外壳蛋白结合位点的K-SAM外显子上。与另一种外壳蛋白融合的TIA-1被拴系到含有该外壳蛋白结合位点的下游内含子上。这导致了K-SAM外显子的高效剪接。我们的结果表明,TIA-1在K-SAM外显子剪接控制中起主导作用,并验证了PP7和MS2外壳蛋白在研究转录后事件中的联合应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b452/2814235/af91ab0d57ef/JBB2009-104853.001.jpg

相似文献

1
Combined use of MS2 and PP7 coat fusions shows that TIA-1 dominates hnRNP A1 for K-SAM exon splicing control.
J Biomed Biotechnol. 2009;2009:104853. doi: 10.1155/2009/104853. Epub 2010 Jan 14.
2
Cooperative binding of TIA-1 and U1 snRNP in K-SAM exon splicing activation.
Biochem Biophys Res Commun. 2007 Jul 13;358(4):1065-70. doi: 10.1016/j.bbrc.2007.05.050. Epub 2007 May 15.
3
hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer.
Mol Cell Biol. 1999 Jan;19(1):251-60. doi: 10.1128/MCB.19.1.251.
6
hnRNP A1 contacts exon 5 to promote exon 6 inclusion of apoptotic Fas gene.
Apoptosis. 2013 Jul;18(7):825-35. doi: 10.1007/s10495-013-0824-8.
7
hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B.
J Biol Chem. 2004 Sep 10;279(37):38249-59. doi: 10.1074/jbc.M405377200. Epub 2004 Jun 18.
10
Control of hnRNP A1 alternative splicing: an intron element represses use of the common 3' splice site.
Mol Cell Biol. 2000 Oct;20(19):7353-62. doi: 10.1128/MCB.20.19.7353-7362.2000.

引用本文的文献

1
Disordered C-terminal domain drives spatiotemporal confinement of RNAPII to enhance search for chromatin targets.
Nat Cell Biol. 2024 Apr;26(4):581-592. doi: 10.1038/s41556-024-01382-2. Epub 2024 Mar 28.
3
hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target.
Front Pharmacol. 2022 Oct 21;13:986409. doi: 10.3389/fphar.2022.986409. eCollection 2022.
4
HiFENS: high-throughput FISH detection of endogenous pre-mRNA splicing isoforms.
Nucleic Acids Res. 2022 Dec 9;50(22):e130. doi: 10.1093/nar/gkac869.
5
Rational Design of Aptamer-Tagged tRNAs.
Int J Mol Sci. 2020 Oct 21;21(20):7793. doi: 10.3390/ijms21207793.
6
Applications of phage-derived RNA-based technologies in synthetic biology.
Synth Syst Biotechnol. 2020 Dec;5(4):343-360. doi: 10.1016/j.synbio.2020.09.003. Epub 2020 Oct 16.
7
PRC2 is dispensable for -mediated transcriptional repression.
EMBO J. 2017 Apr 13;36(8):981-994. doi: 10.15252/embj.201695335. Epub 2017 Feb 6.
9
hnRNP A1: the Swiss army knife of gene expression.
Int J Mol Sci. 2013 Sep 16;14(9):18999-9024. doi: 10.3390/ijms140918999.
10
Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals.
Nucleic Acids Res. 2012 Jul;40(12):5775-86. doi: 10.1093/nar/gks168. Epub 2012 Mar 1.

本文引用的文献

1
Tethering assays to investigate nonsense-mediated mRNA decay activating proteins.
Methods Enzymol. 2008;448:467-82. doi: 10.1016/S0076-6879(08)02623-2.
2
A tethering approach to study proteins that activate mRNA turnover in human cells.
Methods Mol Biol. 2008;419:121-33. doi: 10.1007/978-1-59745-033-1_8.
3
Structural basis for the coevolution of a viral RNA-protein complex.
Nat Struct Mol Biol. 2008 Jan;15(1):103-5. doi: 10.1038/nsmb1327. Epub 2007 Dec 9.
4
Tethered function assays: an adaptable approach to study RNA regulatory proteins.
Methods Enzymol. 2007;429:299-321. doi: 10.1016/S0076-6879(07)29014-7.
5
Cooperative binding of TIA-1 and U1 snRNP in K-SAM exon splicing activation.
Biochem Biophys Res Commun. 2007 Jul 13;358(4):1065-70. doi: 10.1016/j.bbrc.2007.05.050. Epub 2007 May 15.
6
Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3'-UTR.
RNA. 2007 Jul;13(7):1103-15. doi: 10.1261/rna.577707. Epub 2007 May 16.
7
A splicing repressor domain in polypyrimidine tract-binding protein.
J Biol Chem. 2006 Jan 13;281(2):800-6. doi: 10.1074/jbc.M510578200. Epub 2005 Nov 9.
8
The CD44 alternative v9 exon contains a splicing enhancer responsive to the SR proteins 9G8, ASF/SF2, and SRp20.
J Biol Chem. 2003 Aug 29;278(35):32943-53. doi: 10.1074/jbc.M301090200. Epub 2003 Jun 24.
10
RNA recognition site of PP7 coat protein.
Nucleic Acids Res. 2002 Oct 1;30(19):4138-44. doi: 10.1093/nar/gkf552.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验