Suppr超能文献

利用临床信息预测高费用患者。

Using information on clinical conditions to predict high-cost patients.

机构信息

Center for Financing, Access, and Cost Trends, Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, MD 20850, USA.

出版信息

Health Serv Res. 2010 Apr;45(2):532-52. doi: 10.1111/j.1475-6773.2009.01080.x. Epub 2010 Jan 27.

Abstract

OBJECTIVE

To compare the ability of different models to predict prospectively whether someone will incur high medical expenditures.

DATA SOURCE

Using nationally representative data from the Medical Expenditure Panel Survey (MEPS), prediction models were developed using cohorts initiated in 1996-1999 (N=52,918), and validated using cohorts initiated in 2000-2003 (N=61,155).

STUDY DESIGN

We estimated logistic regression models to predict being in the upper expenditure decile in Year 2 of a cohort, based on data from Year 1. We compared a summary risk score based on diagnostic cost group (DCG) prospective risk scores to a count of chronic conditions and indicators for 10 specific high-prevalence chronic conditions. We examined whether self-rated health and functional limitations enhanced prediction, controlling for clinical conditions. Models were evaluated using the Bayesian information criterion and the c-statistic.

PRINCIPAL FINDINGS

Medical condition information substantially improved prediction of high expenditures beyond gender and age, with the DCG risk score providing the greatest improvement in prediction. The count of chronic conditions, self-reported health status, and functional limitations were significantly associated with future high expenditures, controlling for DCG score. A model including these variables had good discrimination (c=0.836).

CONCLUSIONS

The number of chronic conditions merits consideration in future efforts to develop expenditure prediction models. While significant, self-rated health and indicators of functioning improved prediction only slightly.

摘要

目的

比较不同模型预测个体未来医疗支出高的能力。

数据来源

利用来自医疗支出调查(MEPS)的全国代表性数据,使用 1996-1999 年启动的队列(N=52918)开发预测模型,并使用 2000-2003 年启动的队列进行验证(N=61155)。

研究设计

我们基于第 1 年的数据,使用逻辑回归模型来预测队列第 2 年处于支出最高十分位数的情况。我们将基于诊断费用组(DCG)的预测风险评分的汇总风险评分与 10 种特定高发慢性病的数量进行比较。我们研究了自我报告的健康状况和功能限制是否会增强预测,同时控制了临床状况。我们使用贝叶斯信息准则和 c 统计量评估模型。

主要发现

除了性别和年龄之外,医疗状况信息大大提高了对高支出的预测能力,而 DCG 风险评分对预测的改善最大。慢性病数量、自我报告的健康状况和功能限制与未来的高支出显著相关,控制了 DCG 评分。一个包含这些变量的模型具有良好的区分度(c=0.836)。

结论

慢性病的数量值得在未来开发支出预测模型的努力中加以考虑。尽管自我报告的健康状况和功能指标具有显著意义,但对预测的改善只有微小的提升。

相似文献

1
Using information on clinical conditions to predict high-cost patients.
Health Serv Res. 2010 Apr;45(2):532-52. doi: 10.1111/j.1475-6773.2009.01080.x. Epub 2010 Jan 27.
2
Using the SF-12 health status measure to improve predictions of medical expenditures.
Med Care. 2006 May;44(5 Suppl):I54-63. doi: 10.1097/01.mlr.0000208141.02083.86.
3
4
Health care expenditure prediction with a single item, self-rated health measure.
Med Care. 2009 Apr;47(4):440-7. doi: 10.1097/MLR.0b013e318190b716.
5
Incremental Health Care Expenditure of Chronic Cutaneous Ulcers in the United States.
JAMA Dermatol. 2019 Jun 1;155(6):694-699. doi: 10.1001/jamadermatol.2018.5942.
6
Predicting high-cost pediatric patients: derivation and validation of a population-based model.
Med Care. 2015 Aug;53(8):729-35. doi: 10.1097/MLR.0000000000000391.
7
Activity limitations predict health care expenditures in the general population in Belgium.
BMC Public Health. 2015 Mar 19;15:267. doi: 10.1186/s12889-015-1607-7.
8
Diagnostic, pharmacy-based, and self-reported health measures in risk equalization models.
Med Care. 2010 May;48(5):448-57. doi: 10.1097/MLR.0b013e3181d559b4.
9
The utility of extended longitudinal profiles in predicting future health care expenditures.
Med Care. 2006 May;44(5 Suppl):I45-53. doi: 10.1097/01.mlr.0000208200.31206.38.
10
The Charlson comorbidity index can be used prospectively to identify patients who will incur high future costs.
PLoS One. 2014 Dec 3;9(12):e112479. doi: 10.1371/journal.pone.0112479. eCollection 2014.

引用本文的文献

2
3
Does intergenerational support affect older People's social participation? An Empirical study of an older Chinese population.
SSM Popul Health. 2023 Feb 21;22:101368. doi: 10.1016/j.ssmph.2023.101368. eCollection 2023 Jun.
5
Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach.
JMIR Med Inform. 2022 Aug 30;10(8):e37578. doi: 10.2196/37578.
6
Defining Complex Patient Populations: Implications for Population Size, Composition, Utilization, and Costs.
J Gen Intern Med. 2022 Feb;37(2):351-358. doi: 10.1007/s11606-021-06815-4. Epub 2021 Jun 2.

本文引用的文献

1
Evaluating Alternative Risk Adjusters for Medicare.
Health Care Financ Rev. 1998 Winter;20(2):109-129.
2
Sensitivity of household reported medical conditions in the medical expenditure panel survey.
Med Care. 2009 Jun;47(6):618-25. doi: 10.1097/MLR.0b013e318195fa79.
3
Health care expenditure prediction with a single item, self-rated health measure.
Med Care. 2009 Apr;47(4):440-7. doi: 10.1097/MLR.0b013e318190b716.
5
The Charlson comorbidity index is adapted to predict costs of chronic disease in primary care patients.
J Clin Epidemiol. 2008 Dec;61(12):1234-1240. doi: 10.1016/j.jclinepi.2008.01.006. Epub 2008 Jul 10.
6
The estimation power of alternative comorbidity indices.
Value Health. 2008 Sep-Oct;11(5):946-55. doi: 10.1111/j.1524-4733.2008.00343.x. Epub 2008 May 16.
8
In search of the perfect comorbidity measure for use with administrative claims data: does it exist?
Med Care. 2006 Aug;44(8):745-53. doi: 10.1097/01.mlr.0000223475.70440.07.
9
Hospital inpatient costs for adults with multiple chronic conditions.
Med Care Res Rev. 2006 Jun;63(3):327-46. doi: 10.1177/1077558706287042.
10
Using the SF-12 health status measure to improve predictions of medical expenditures.
Med Care. 2006 May;44(5 Suppl):I54-63. doi: 10.1097/01.mlr.0000208141.02083.86.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验