Suppr超能文献

S21 穿孔素基因突变分析。

Mutational analysis of the S21 pinholin.

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.

出版信息

Mol Microbiol. 2010 Apr;76(1):68-77. doi: 10.1111/j.1365-2958.2010.07080.x. Epub 2010 Feb 23.

Abstract

Lambdoid phage 21 has the prototype pinholin-SAR endolysin lysis system, which is widely distributed among phages. Its prototype pinholin, S(21)68, triggers at an allele-specific time to form small, heptameric lesions, or pinholes, in the cytoplasmic membrane, thus initiating lysis. S(21)68 has two transmembrane domains, TMD1 and TMD2. Only TMD2 is required for the formation of pinholes, whereas TMD1 acts as an inhibitor of TMD2 and must be externalized to the periplasm in the lytic pathway. Previously we provided evidence that S(21)68 first accumulates as inactive dimers with both transmembrane domains embedded in the bilayer. Here we analyse an extensive collection of S(21) mutants to identify residues and domains critical to the function and regulation of the pinholin. Evidence is presented indicating that, within the inactive dimer, TMD1 acts in trans as an inhibitor of the lethal function of TMD2. A wide range of phenotypes, from absolute lysis defectives to accelerated lysis triggering, are observed for mutations mapping to each topological domain. The pattern of phenotypes allows the generation of a model for the structure of the inactive dimer. The model identifies the faces of the two transmembrane domains involved in intramolecular and intermolecular interactions, as well as interaction with the lipid.

摘要

λ 噬菌体 21 具有典型的穿孔素-SAR 内溶素裂解系统,广泛分布于噬菌体中。其典型的穿孔素 S(21)68 在等位基因特异性时间触发,在细胞质膜中形成小的七聚体损伤或穿孔,从而启动裂解。S(21)68 有两个跨膜结构域,TMD1 和 TMD2。只有 TMD2 是形成穿孔所必需的,而 TMD1 作为 TMD2 的抑制剂,在裂解途径中必须被外化到周质中。以前我们提供的证据表明,S(21)68 首先以无活性的二聚体形式积累,两个跨膜结构域都嵌入双层中。在这里,我们分析了大量的 S(21)突变体,以确定对穿孔素的功能和调节至关重要的残基和结构域。有证据表明,在无活性的二聚体中,TMD1 作为 TMD2 致死功能的抑制剂在转位起作用。映射到每个拓扑结构域的突变体表现出从绝对裂解缺陷到加速裂解触发的广泛表型。表型模式允许生成无活性二聚体结构的模型。该模型确定了两个跨膜结构域在分子内和分子间相互作用以及与脂质相互作用中涉及的面。

相似文献

1
Mutational analysis of the S21 pinholin.
Mol Microbiol. 2010 Apr;76(1):68-77. doi: 10.1111/j.1365-2958.2010.07080.x. Epub 2010 Feb 23.
2
Mapping the pinhole formation pathway of S21.
Mol Microbiol. 2010 Nov;78(3):710-9. doi: 10.1111/j.1365-2958.2010.07362.x. Epub 2010 Sep 14.
3
Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S Using DEER Spectroscopy.
J Phys Chem B. 2020 Dec 17;124(50):11396-11405. doi: 10.1021/acs.jpcb.0c09081. Epub 2020 Dec 8.
4
Topological dynamics of holins in programmed bacterial lysis.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19713-8. doi: 10.1073/pnas.0600943103. Epub 2006 Dec 15.
5
Visualization of pinholin lesions in vivo.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2054-63. doi: 10.1073/pnas.1222283110. Epub 2013 May 13.
6
Structural and functional characterization of the pore-forming domain of pinholin S68.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29637-29646. doi: 10.1073/pnas.2007979117. Epub 2020 Nov 5.
7
Pinholin S mutations induce structural topology and conformational changes.
Biochim Biophys Acta Biomembr. 2021 Dec 1;1863(12):183771. doi: 10.1016/j.bbamem.2021.183771. Epub 2021 Sep 7.
8
Phage lysis: three steps, three choices, one outcome.
J Microbiol. 2014 Mar;52(3):243-58. doi: 10.1007/s12275-014-4087-z. Epub 2014 Mar 1.
9
Determining the helical tilt angle and dynamic properties of the transmembrane domains of pinholin S68 using mechanical alignment EPR spectroscopy.
Biochim Biophys Acta Biomembr. 2023 Jun;1865(5):184154. doi: 10.1016/j.bbamem.2023.184154. Epub 2023 Apr 5.
10
Identifying components of the phage LambdaSo lysis system.
J Bacteriol. 2024 Jun 20;206(6):e0002224. doi: 10.1128/jb.00022-24. Epub 2024 May 21.

引用本文的文献

2
Microscopic origin of the spatial and temporal precision in biological systems.
Biophys Rep (N Y). 2025 Mar 12;5(1):100197. doi: 10.1016/j.bpr.2025.100197. Epub 2025 Jan 28.
3
Molecular mechanisms of precise timing in cell lysis.
Biophys J. 2024 Sep 17;123(18):3090-3099. doi: 10.1016/j.bpj.2024.07.008. Epub 2024 Jul 6.
4
Identifying components of the phage LambdaSo lysis system.
J Bacteriol. 2024 Jun 20;206(6):e0002224. doi: 10.1128/jb.00022-24. Epub 2024 May 21.
5
Length matters: Functional flip of the short TatA transmembrane helix.
Biophys J. 2023 Jun 6;122(11):2125-2146. doi: 10.1016/j.bpj.2022.12.016. Epub 2022 Dec 15.
7
Pinholin S mutations induce structural topology and conformational changes.
Biochim Biophys Acta Biomembr. 2021 Dec 1;1863(12):183771. doi: 10.1016/j.bbamem.2021.183771. Epub 2021 Sep 7.
8
Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S Using DEER Spectroscopy.
J Phys Chem B. 2020 Dec 17;124(50):11396-11405. doi: 10.1021/acs.jpcb.0c09081. Epub 2020 Dec 8.
9
Structural and functional characterization of the pore-forming domain of pinholin S68.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29637-29646. doi: 10.1073/pnas.2007979117. Epub 2020 Nov 5.

本文引用的文献

1
Micron-scale holes terminate the phage infection cycle.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2219-23. doi: 10.1073/pnas.0914030107. Epub 2010 Jan 11.
2
The N-terminal transmembrane domain of lambda S is required for holin but not antiholin function.
J Bacteriol. 2010 Feb;192(3):725-33. doi: 10.1128/JB.01263-09. Epub 2009 Nov 6.
3
Regulation of a muralytic enzyme by dynamic membrane topology.
Nat Struct Mol Biol. 2009 Nov;16(11):1192-4. doi: 10.1038/nsmb.1681. Epub 2009 Nov 1.
4
Structure of the lethal phage pinhole.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18966-71. doi: 10.1073/pnas.0907941106. Epub 2009 Oct 27.
5
The pinholin of lambdoid phage 21: control of lysis by membrane depolarization.
J Bacteriol. 2007 Dec;189(24):9135-9. doi: 10.1128/JB.00847-07. Epub 2007 Sep 7.
6
Topological dynamics of holins in programmed bacterial lysis.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19713-8. doi: 10.1073/pnas.0600943103. Epub 2006 Dec 15.
7
Periplasmic domains define holin-antiholin interactions in t4 lysis inhibition.
J Bacteriol. 2005 Oct;187(19):6631-40. doi: 10.1128/JB.187.19.6631-6640.2005.
8
Biogenesis of inner membrane proteins in Escherichia coli.
Annu Rev Microbiol. 2005;59:329-55. doi: 10.1146/annurev.micro.59.030804.121246.
9
A signal-arrest-release sequence mediates export and control of the phage P1 endolysin.
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6415-20. doi: 10.1073/pnas.0400957101. Epub 2004 Apr 16.
10
An ancient player unmasked: T4 rI encodes a t-specific antiholin.
Mol Microbiol. 2001 Aug;41(3):575-83. doi: 10.1046/j.1365-2958.2001.02491.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验