Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.
J Neurochem. 2010 Apr;113(1):228-35. doi: 10.1111/j.1471-4159.2010.06590.x. Epub 2010 Feb 2.
Early onset torsion dystonia (DYT1), the most common form of hereditary primary dystonia, is caused by a mutation in the TOR1A gene, which codes for the protein, torsinA. We previously examined the effect of the human mutant torsinA on striatal dopaminergic function in a conventional transgenic mouse model of DYT1 dystonia (hMT1), in which human mutant torsinA is expressed under the cytomegalovirus promotor. Systemic administration of amphetamine did not increase dopamine (DA) release as efficiently in these mice as compared with wild-type transgenic and non-transgenic mice. We, now, studied the contribution of the DA transporter (DAT) to amphetamine-induced DA release in hMT1 transgenic mice using in vivo no-net flux microdialysis. This method applies different concentrations of DA through the microdialysis probe and measures DA concentration at the output of the probe following an equilibrium period. The slope (extraction fraction) is the measure of the DAT activity in vivo. The slope for hMT1 transgenic mice was 0.58 +/- 0.07 and for non-transgenic animals, 0.87 +/- 0.06 (p < 0.05). We further investigated the efficacy of nomifensine (a specific DAT inhibitor) in inhibiting amphetamine-induced DA release. Local application of nomifensine 80 min before the systemic application of amphetamine inhibited DA release in both transgenic mice and their non-transgenic littermates. The efficiency of the inhibition appeared to be different, with mean values of 48% for hMT1 transgenic mice versus 84% for non-transgenic littermates. Moreover, we have evaluated basal and amphetamine-induced locomotion in hMT1 transgenic mice compared with their non-transgenic littermates, using an O-maze behavioral chamber. Basal levels of locomotion in the hMT1 transgenic mice showed that they moved much less than their non-transgenic littermates (0.9 +/- 0.3 m for transgenic mice vs. 2.4 +/- 0.7 m for non-transgenic littermates, p < 0.05). This relative reduction in locomotion was also observed following amphetamine administration (48.5 +/- 6.7 m for transgenics vs. 73.7 +/- 9.8 m for non-transgenics, p < 0.05). These results support the finding that there are altered dynamics of DA release and reuptake in hMT1 transgenic mice in vivo, with DAT activity is reduced in the presence of mutant torsinA, which is consistent with behavioral consequences such as reduced locomotion and (previously described) abnormal motor phenotypes such as increased hind-base width and impaired performance on the raised-beam task. These data implies that altered DAT function may contribute to impaired DA neurotransmission and clinical symptoms in human DYT1 dystonia.
早发性扭转痉挛(DYT1)是最常见的遗传性原发性肌张力障碍,由 TOR1A 基因突变引起,该基因编码蛋白 torsinA。我们之前在 DYT1 肌张力障碍的常规转基因小鼠模型(hMT1)中检查了人类突变 torsinA 对纹状体多巴胺能功能的影响,在该模型中,人类突变 torsinA 在巨细胞病毒启动子的控制下表达。与野生型转基因和非转基因小鼠相比,这些小鼠给予安非他命后多巴胺(DA)的释放效率并没有那么高。现在,我们使用体内无净流量微透析法研究 hMT1 转基因小鼠中 DA 转运体(DAT)对安非他命诱导的 DA 释放的贡献。该方法通过微透析探针施加不同浓度的 DA,并在平衡期后测量探针输出处的 DA 浓度。斜率(提取分数)是体内 DAT 活性的衡量标准。hMT1 转基因小鼠的斜率为 0.58±0.07,而非转基因动物的斜率为 0.87±0.06(p<0.05)。我们进一步研究了 nomifensine(一种特定的 DAT 抑制剂)抑制安非他命诱导的 DA 释放的效果。在安非他命全身给药前 80 分钟局部应用 nomifensine 抑制了转基因小鼠及其非转基因同窝仔鼠的 DA 释放。抑制效率似乎不同,hMT1 转基因小鼠的平均值为 48%,而非转基因同窝仔鼠的平均值为 84%。此外,我们使用 O 型迷宫行为室评估了 hMT1 转基因小鼠与非转基因同窝仔鼠的基础和安非他命诱导的运动。hMT1 转基因小鼠的基础运动水平表明,它们的运动明显少于非转基因同窝仔鼠(转基因小鼠为 0.9±0.3 m,而非转基因同窝仔鼠为 2.4±0.7 m,p<0.05)。在给予安非他命后也观察到这种相对运动减少(转基因小鼠为 48.5±6.7 m,而非转基因同窝仔鼠为 73.7±9.8 m,p<0.05)。这些结果支持这样的发现,即 hMT1 转基因小鼠体内存在 DA 释放和再摄取动力学的改变,DAT 活性在存在突变 torsinA 的情况下降低,这与运动行为的后果(如运动减少)以及(以前描述过的)异常运动表型(如后肢基底宽度增加和在抬高的横梁任务中表现受损)一致。这些数据表明,DAT 功能的改变可能导致人类 DYT1 肌张力障碍中的多巴胺能神经传递受损和临床症状。