Suppr超能文献

基底神经节及相关神经回路神经发育疾病的小鼠模型

Mouse models of neurodevelopmental disease of the basal ganglia and associated circuits.

作者信息

Pappas Samuel S, Leventhal Daniel K, Albin Roger L, Dauer William T

机构信息

Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.

Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Michigan Alzheimer Disease Center, University of Michigan, Ann Arbor, Michigan, USA; Geriatrics Research, Education, and Clinical Center, VAAAHS, Ann Arbor, Michigan, USA.

出版信息

Curr Top Dev Biol. 2014;109:97-169. doi: 10.1016/B978-0-12-397920-9.00001-9.

Abstract

This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.

摘要

本章聚焦于与纹状体及相关结构功能异常紧密相关的神经发育疾病。我们首先概述三种以纹状体功能障碍为关键因素的代表性疾病——妥瑞氏症和强迫症、雷特综合征以及原发性肌张力障碍。这些疾病凸显了在发育过程中破坏纹状体完整性和功能的不同病因,并展示了纹状体功能障碍的多样临床表现。然后,我们回顾纹状体的组织和功能,包括纹状体在在线运动控制/动作选择、强化学习、习惯形成和动作序列方面所起作用的证据。尽管最近取得了显著进展,但这些疾病的动物模型相对匮乏仍是阻碍研究进展的一个关键因素。我们回顾这些研究成果,包括它们在深入了解疾病发病机制、疾病症状学和基底神经节功能方面的相对优势。

相似文献

1
Mouse models of neurodevelopmental disease of the basal ganglia and associated circuits.
Curr Top Dev Biol. 2014;109:97-169. doi: 10.1016/B978-0-12-397920-9.00001-9.
2
The basal ganglia and cerebellum interact in the expression of dystonic movement.
Brain. 2008 Sep;131(Pt 9):2499-509. doi: 10.1093/brain/awn168. Epub 2008 Jul 26.
5
Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia.
Prog Neurobiol. 2015 Apr;127-128:91-107. doi: 10.1016/j.pneurobio.2015.02.002. Epub 2015 Feb 17.
6
Convergent evidence for abnormal striatal synaptic plasticity in dystonia.
Neurobiol Dis. 2010 Mar;37(3):558-73. doi: 10.1016/j.nbd.2009.12.003. Epub 2009 Dec 18.
7
Tourette syndrome and obsessive-compulsive disorder.
Brain Dev. 2008 Apr;30(4):231-7. doi: 10.1016/j.braindev.2007.09.001. Epub 2007 Oct 15.
9
Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder.
Biol Psychiatry. 2014 Apr 15;75(8):623-30. doi: 10.1016/j.biopsych.2013.01.008. Epub 2013 Feb 13.
10
Neural substrates of self-regulatory control in children and adults with Tourette syndrome.
Can J Psychiatry. 2009 Sep;54(9):579-88. doi: 10.1177/070674370905400902.

引用本文的文献

1
Pathophysiology of Dyt1- dystonia in mice is mediated by spinal neural circuit dysfunction.
Sci Transl Med. 2023 May 3;15(694):eadg3904. doi: 10.1126/scitranslmed.adg3904.
2
Role of the subthalamic nucleus in perceiving and estimating the passage of time.
Front Aging Neurosci. 2023 Mar 2;15:1090052. doi: 10.3389/fnagi.2023.1090052. eCollection 2023.
3
Comparative anatomical analysis of dopamine systems in Mus musculus and Peromyscus californicus.
Brain Struct Funct. 2022 Jul;227(6):2219-2227. doi: 10.1007/s00429-022-02497-8. Epub 2022 May 2.
4
A dystonia mouse model with motor and sequencing deficits paralleling human disease.
Behav Brain Res. 2022 May 24;426:113844. doi: 10.1016/j.bbr.2022.113844. Epub 2022 Mar 15.
5
Gray matter abnormalities in Tourette Syndrome: a meta-analysis of voxel-based morphometry studies.
Transl Psychiatry. 2021 May 14;11(1):287. doi: 10.1038/s41398-021-01394-8.
6
Continuous Whole-Body 3D Kinematic Recordings across the Rodent Behavioral Repertoire.
Neuron. 2021 Feb 3;109(3):420-437.e8. doi: 10.1016/j.neuron.2020.11.016. Epub 2020 Dec 18.
7
The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia.
Brain Res Bull. 2020 Dec;165:14-22. doi: 10.1016/j.brainresbull.2020.09.011. Epub 2020 Sep 22.
10
Centella asiatica increases hippocampal synaptic density and improves memory and executive function in aged mice.
Brain Behav. 2018 Jul;8(7):e01024. doi: 10.1002/brb3.1024. Epub 2018 Jun 19.

本文引用的文献

1
Dissociable effects of dopamine on learning and performance within sensorimotor striatum.
Basal Ganglia. 2014 Jun 1;4(2):43-54. doi: 10.1016/j.baga.2013.11.001.
2
Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences.
Nat Neurosci. 2014 Mar;17(3):423-30. doi: 10.1038/nn.3632. Epub 2014 Jan 26.
3
Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice.
Neuron. 2014 Jan 8;81(1):77-90. doi: 10.1016/j.neuron.2013.10.052.
4
Dendritic arborization and spine dynamics are abnormal in the mouse model of MECP2 duplication syndrome.
J Neurosci. 2013 Dec 11;33(50):19518-33. doi: 10.1523/JNEUROSCI.1745-13.2013.
5
Dystonia as a network disorder: what is the role of the cerebellum?
Neuroscience. 2014 Feb 28;260:23-35. doi: 10.1016/j.neuroscience.2013.11.062. Epub 2013 Dec 11.
6
Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons.
Front Cell Neurosci. 2013 Nov 14;7:209. doi: 10.3389/fncel.2013.00209. eCollection 2013.
7
Control of basal ganglia output by direct and indirect pathway projection neurons.
J Neurosci. 2013 Nov 20;33(47):18531-9. doi: 10.1523/JNEUROSCI.1278-13.2013.
8
Basal ganglia output to the thalamus: still a paradox.
Trends Neurosci. 2013 Dec;36(12):695-705. doi: 10.1016/j.tins.2013.09.001. Epub 2013 Nov 2.
9
Striatal dopamine D1-like receptor binding is unchanged in primary focal dystonia.
Mov Disord. 2013 Dec;28(14):2002-6. doi: 10.1002/mds.25720. Epub 2013 Oct 21.
10
Different correlation patterns of cholinergic and GABAergic interneurons with striatal projection neurons.
Front Syst Neurosci. 2013 Sep 3;7:47. doi: 10.3389/fnsys.2013.00047. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验