Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):987-92. doi: 10.1073/pnas.0912988107.
Biological exoskeletons, in particular those with unusually robust and multifunctional properties, hold enormous potential for the development of improved load-bearing and protective engineering materials. Here, we report new materials and mechanical design principles of the iron-plated multilayered structure of the natural armor of Crysomallon squamiferum, a recently discovered gastropod mollusc from the Kairei Indian hydrothermal vent field, which is unlike any other known natural or synthetic engineered armor. We have determined through nanoscale experiments and computational simulations of a predatory attack that the specific combination of different materials, microstructures, interfacial geometries, gradation, and layering are advantageous for penetration resistance, energy dissipation, mitigation of fracture and crack arrest, reduction of back deflections, and resistance to bending and tensile loads. The structure-property-performance relationships described are expected to be of technological interest for a variety of civilian and defense applications.
生物外骨骼,特别是那些具有异常坚固和多功能特性的外骨骼,为开发改进的承重和防护工程材料提供了巨大的潜力。在这里,我们报告了一种新材料和机械设计原理,即来自 Kairai 印度热液喷口场的一种新发现的腹足纲软体动物 Crysomallon squamiferum 的天然盔甲的镀铁多层结构,它与任何其他已知的天然或合成工程盔甲都不同。我们通过纳米级实验和对捕食攻击的计算模拟确定,不同材料、微观结构、界面几何形状、渐变和分层的特定组合有利于抗穿透、能量耗散、减少断裂和裂纹阻止、减少背面挠度以及抗弯和拉伸载荷的阻力。所描述的结构-性能-关系预计将对各种民用和国防应用具有技术意义。