Suppr超能文献

用于在急性脑切片中绘制神经回路的纳米线晶体管阵列。

Nanowire transistor arrays for mapping neural circuits in acute brain slices.

机构信息

Department of Chemistry and Chemical Biology, Center for Brain Science, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1882-7. doi: 10.1073/pnas.0914737107. Epub 2010 Jan 19.

Abstract

Revealing the functional connectivity in natural neuronal networks is central to understanding circuits in the brain. Here, we show that silicon nanowire field-effect transistor (Si NWFET) arrays fabricated on transparent substrates can be reliably interfaced to acute brain slices. NWFET arrays were readily designed to record across a wide range of length scales, while the transparent device chips enabled imaging of individual cell bodies and identification of areas of healthy neurons at both upper and lower tissue surfaces. Simultaneous NWFET and patch clamp studies enabled unambiguous identification of action potential signals, with additional features detected at earlier times by the nanodevices. NWFET recording at different positions in the absence and presence of synaptic and ion-channel blockers enabled assignment of these features to presynaptic firing and postsynaptic depolarization from regions either close to somata or abundant in dendritic projections. In all cases, the NWFET signal amplitudes were from 0.3-3 mV. In contrast to conventional multielectrode array measurements, the small active surface of the NWFET devices, approximately 0.06 microm(2), provides highly localized multiplexed measurements of neuronal activities with demonstrated sub-millisecond temporal resolution and, significantly, better than 30 microm spatial resolution. In addition, multiplexed mapping with 2D NWFET arrays revealed spatially heterogeneous functional connectivity in the olfactory cortex with a resolution surpassing substantially previous electrical recording techniques. Our demonstration of simultaneous high temporal and spatial resolution recording, as well as mapping of functional connectivity, suggest that NWFETs can become a powerful platform for studying neural circuits in the brain.

摘要

揭示自然神经元网络中的功能连接对于理解大脑中的电路至关重要。在这里,我们展示了在透明衬底上制造的硅纳米线场效应晶体管(Si NWFET)阵列可以可靠地与急性脑切片接口。NWFET 阵列可以轻松设计为在广泛的长度范围内进行记录,而透明器件芯片则可以对单个细胞体进行成像,并识别上下组织表面健康神经元的区域。同时进行的 NWFET 和膜片钳研究使明确识别动作电位信号成为可能,纳米器件还可以更早地检测到其他特征。在不存在和存在突触和离子通道阻滞剂的情况下,在不同位置进行 NWFET 记录,使这些特征可以分配给靠近胞体或富含树突投射的区域的突触前发射和突触后去极化。在所有情况下,NWFET 信号幅度均为 0.3-3 mV。与传统的多电极阵列测量相比,NWFET 器件的小有效表面积(约 0.06 微米 2 )提供了高度局部化的神经元活动复用测量,具有证明的亚毫秒时间分辨率,并且显著优于 30 微米的空间分辨率。此外,使用 2D NWFET 阵列进行的复用映射揭示了嗅觉皮层中空间异质的功能连接,其分辨率大大超过了先前的电记录技术。我们同时进行高时间和空间分辨率记录以及功能连接映射的演示表明,NWFET 可以成为研究大脑中神经电路的强大平台。

相似文献

1
Nanowire transistor arrays for mapping neural circuits in acute brain slices.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1882-7. doi: 10.1073/pnas.0914737107. Epub 2010 Jan 19.
2
Nanowire platform for mapping neural circuits.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4489-90. doi: 10.1073/pnas.1000450107. Epub 2010 Mar 1.
3
Flexible electrical recording from cells using nanowire transistor arrays.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7309-13. doi: 10.1073/pnas.0902752106. Epub 2009 Apr 13.
4
Electrical recording from hearts with flexible nanowire device arrays.
Nano Lett. 2009 Feb;9(2):914-8. doi: 10.1021/nl900096z.
6
Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin.
Front Neurosci. 2017 Sep 20;11:501. doi: 10.3389/fnins.2017.00501. eCollection 2017.
9
Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions.
Nat Nanotechnol. 2014 Feb;9(2):142-7. doi: 10.1038/nnano.2013.273. Epub 2013 Dec 15.

引用本文的文献

1
Interfacing with the Brain: How Nanotechnology Can Contribute.
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
2
Biomaterials for neuroengineering: applications and challenges.
Regen Biomater. 2025 Feb 21;12:rbae137. doi: 10.1093/rb/rbae137. eCollection 2025.
3
Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration.
Sensors (Basel). 2023 Jun 21;23(13):5782. doi: 10.3390/s23135782.
4
Nanowire-Enabled Bioelectronics.
Nano Today. 2021 Jun;38. doi: 10.1016/j.nantod.2021.101135. Epub 2021 Mar 20.
5
Bio-hybrid electronic and photonic devices.
Exp Biol Med (Maywood). 2022 Dec;247(23):2128-2141. doi: 10.1177/15353702221144087. Epub 2022 Dec 19.
7
Comparative Characterization of NWFET and FinFET Transistor Structures Using TCAD Modeling.
Micromachines (Basel). 2022 Aug 11;13(8):1293. doi: 10.3390/mi13081293.
8
Multisite Dopamine Sensing With Femtomolar Resolution Using a CMOS Enabled Aptasensor Chip.
Front Neurosci. 2022 Jun 3;16:875656. doi: 10.3389/fnins.2022.875656. eCollection 2022.
9
Synthesis of encapsulated ZnO nanowires provide low impedance alternatives for microelectrodes.
PLoS One. 2022 Jun 16;17(6):e0270164. doi: 10.1371/journal.pone.0270164. eCollection 2022.
10
Nano-enabled cellular engineering for bioelectric studies.
Nano Res. 2020 May;13(5):1214-1227. doi: 10.1007/s12274-019-2580-8. Epub 2019 Dec 21.

本文引用的文献

1
Silicon electronics on silk as a path to bioresorbable, implantable devices.
Appl Phys Lett. 2009 Sep 28;95(13):133701. doi: 10.1063/1.3238552. Epub 2009 Sep 29.
2
Flexible electrical recording from cells using nanowire transistor arrays.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7309-13. doi: 10.1073/pnas.0902752106. Epub 2009 Apr 13.
3
In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
IEEE Trans Biomed Eng. 2009 Jul;56(7):1909-18. doi: 10.1109/TBME.2009.2018457. Epub 2009 Apr 7.
4
Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts.
Nat Nanotechnol. 2009 Feb;4(2):126-33. doi: 10.1038/nnano.2008.374. Epub 2008 Dec 21.
5
Electrical recording from hearts with flexible nanowire device arrays.
Nano Lett. 2009 Feb;9(2):914-8. doi: 10.1021/nl900096z.
6
Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices.
Biosens Bioelectron. 2009 Mar 15;24(7):2191-8. doi: 10.1016/j.bios.2008.11.028. Epub 2008 Dec 7.
7
On the organization of olfactory and vomeronasal cortices.
Prog Neurobiol. 2009 Jan 12;87(1):21-30. doi: 10.1016/j.pneurobio.2008.09.010. Epub 2008 Sep 25.
8
Calcium imaging in the living brain: prospects for molecular medicine.
Trends Mol Med. 2008 Sep;14(9):389-99. doi: 10.1016/j.molmed.2008.07.005. Epub 2008 Aug 12.
9
Supported lipid bilayer/carbon nanotube hybrids.
Nat Nanotechnol. 2007 Mar;2(3):185-90. doi: 10.1038/nnano.2007.34. Epub 2007 Feb 25.
10
Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity.
Nat Neurosci. 2008 Jun;11(6):713-20. doi: 10.1038/nn.2116. Epub 2008 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验