Suppr超能文献

细胞衰老和老化过程中的核和染色质重排——综述。

Nuclear and chromatin reorganization during cell senescence and aging - a mini-review.

机构信息

Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, Ky., USA.

出版信息

Gerontology. 2011;57(1):76-84. doi: 10.1159/000281882. Epub 2010 Feb 4.

Abstract

Genetic material in the nucleus governs mechanisms related to cell proliferation, differentiation, and function. Thus, senescence and aging are directly tied to the change of nuclear function and structure. The most important mechanisms that affect cell senescence are: (i) telomere shortening; (ii) environmental stress-mediated accumulation of DNA mutations, and (iii) the intrinsically encoded biological clock that dictates lifespan events of any particular cell type. Overall, these changes lead to modification of the expression of genes that are responsible for: (i) organization of the nuclear structure; (ii) integrity of transcriptionally inactive heterochromatin, and (iii) epigenetic modification of chromosomes due to DNA methylation and/or histone modifications. These aging-related nuclear alterations do not only affect somatic cells. More importantly, they affect stem cells, which are responsible for proper tissue rejuvenation. In this review, we focus on epigenetic changes in the chromatin structure and their impact on the biology and function of adult cells as they age. We will also address aging-related changes in a compartment of the most primitive pluripotent stem cells that were recently identified by our team and named 'very small embryonic/epiblast-like stem cells'.

摘要

细胞核中的遗传物质控制着与细胞增殖、分化和功能相关的机制。因此,衰老与细胞核功能和结构的变化直接相关。影响细胞衰老的最重要机制有:(i)端粒缩短;(ii)环境应激引起的 DNA 突变积累,以及(iii)内在编码的生物钟决定任何特定细胞类型的寿命事件。总的来说,这些变化导致负责以下方面的基因表达发生改变:(i)核结构的组织;(ii)转录失活异染色质的完整性,以及(iii)由于 DNA 甲基化和/或组蛋白修饰而导致的染色体的表观遗传修饰。这些与衰老相关的核改变不仅影响体细胞,更重要的是影响干细胞,后者负责组织的适当再生。在这篇综述中,我们重点关注染色质结构中的表观遗传变化及其对成年细胞生物学和功能的影响。我们还将讨论我们团队最近发现并命名为“非常小的胚胎/内胚层样干细胞”的最原始多能干细胞的衰老相关变化。

相似文献

1
Nuclear and chromatin reorganization during cell senescence and aging - a mini-review.
Gerontology. 2011;57(1):76-84. doi: 10.1159/000281882. Epub 2010 Feb 4.
3
Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging.
Gene. 2007 Aug 1;397(1-2):84-93. doi: 10.1016/j.gene.2007.04.020. Epub 2007 May 1.
4
Genetic and Epigenetic Interactions Involved in Senescence of Stem Cells.
Int J Mol Sci. 2024 Sep 7;25(17):9708. doi: 10.3390/ijms25179708.
5
Human embryonic stem cells: mechanisms to escape replicative senescence?
Stem Cell Rev. 2007 Dec;3(4):270-9. doi: 10.1007/s12015-007-9005-x.
6
Pluripotency in 3D: genome organization in pluripotent cells.
Curr Opin Cell Biol. 2012 Dec;24(6):793-801. doi: 10.1016/j.ceb.2012.11.001. Epub 2012 Nov 27.
7
Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation.
Cell Tissue Res. 2008 Jan;331(1):23-9. doi: 10.1007/s00441-007-0536-x. Epub 2007 Nov 15.
8
Linking Aging to Cancer: The Role of Chromatin Biology.
J Gerontol A Biol Sci Med Sci. 2024 Jul 1;79(7). doi: 10.1093/gerona/glae133.
9
Global reorganization of the nuclear landscape in senescent cells.
Cell Rep. 2015 Feb 3;10(4):471-83. doi: 10.1016/j.celrep.2014.12.055. Epub 2015 Jan 29.
10
Is Evidence Supporting the Subtelomere-Telomere Theory of Aging?
Biochemistry (Mosc). 2021 Dec;86(12):1526-1539. doi: 10.1134/S0006297921120026.

引用本文的文献

1
Senolytic Vaccines from the Central and Peripheral Tolerance Perspective.
Vaccines (Basel). 2024 Dec 10;12(12):1389. doi: 10.3390/vaccines12121389.
2
The Phoenix of stem cells: pluripotent cells in adult tissues and peripheral blood.
Front Bioeng Biotechnol. 2024 Jul 30;12:1414156. doi: 10.3389/fbioe.2024.1414156. eCollection 2024.
3
Detection of senescence using machine learning algorithms based on nuclear features.
Nat Commun. 2024 Feb 3;15(1):1041. doi: 10.1038/s41467-024-45421-w.
4
Very small embryonic-like stem cells have the potential to win the three-front war on tissue damage, cancer, and aging.
Front Cell Dev Biol. 2023 Jan 4;10:1061022. doi: 10.3389/fcell.2022.1061022. eCollection 2022.
5
Remodeling of the Aged and Emphysematous Lungs: Roles of Microenvironmental Cues.
Compr Physiol. 2022 Jun 29;12(3):3559-3574. doi: 10.1002/cphy.c210033.
8
Oxidative Stress in Mesenchymal Stem Cell Senescence: Regulation by Coding and Noncoding RNAs.
Antioxid Redox Signal. 2018 Sep 20;29(9):864-879. doi: 10.1089/ars.2017.7294. Epub 2017 Sep 11.
9
Senescence-Associated MCP-1 Secretion Is Dependent on a Decline in BMI1 in Human Mesenchymal Stromal Cells.
Antioxid Redox Signal. 2016 Mar 20;24(9):471-85. doi: 10.1089/ars.2015.6359. Epub 2016 Jan 27.

本文引用的文献

2
Evidence for cardiomyocyte renewal in humans.
Science. 2009 Apr 3;324(5923):98-102. doi: 10.1126/science.1164680.
3
Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke.
Stroke. 2009 Apr;40(4):1237-44. doi: 10.1161/STROKEAHA.108.535062. Epub 2009 Feb 26.
5
"Small stem cells" in adult tissues: very small embryonic-like stem cells stand up!
Cytometry A. 2009 Jan;75(1):4-13. doi: 10.1002/cyto.a.20665.
6
Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity.
Exp Gerontol. 2008 Nov;43(11):1009-17. doi: 10.1016/j.exger.2008.06.002. Epub 2008 Jun 14.
7
Telomere length, stem cells and aging.
Nat Chem Biol. 2007 Oct;3(10):640-9. doi: 10.1038/nchembio.2007.38.
8
How stem cells age and why this makes us grow old.
Nat Rev Mol Cell Biol. 2007 Sep;8(9):703-13. doi: 10.1038/nrm2241.
9
The role of nuclear architecture in genomic instability and ageing.
Nat Rev Mol Cell Biol. 2007 Sep;8(9):692-702. doi: 10.1038/nrm2238.
10
NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs.
Oncogene. 2007 Aug 13;26(37):5505-20. doi: 10.1038/sj.onc.1210617.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验