Chan I S, Goldstein A A, Bassingthwaighte J B
Center for Bioengineering, University of Washington, Seattle 98195.
Ann Biomed Eng. 1993 Nov-Dec;21(6):621-31. doi: 10.1007/BF02368642.
Nonlinear least squares optimization is used most often in fitting a complex model to a set of data. An ordinary nonlinear least squares optimizer assumes a constant variance for all the data points. This paper presents SENSOP, a weighted nonlinear least squares optimizer, which is designed for fitting a model to a set of data where the variance may or may not be constant. It uses a variant of the Levenberg-Marquardt method to calculate the direction and the length of the step change in the parameter vector. The method for estimating appropriate weighting functions applies generally to 1-dimensional signals and can be used for higher dimensional signals. Sets of multiple tracer outflow dilution curves present special problems because the data encompass three to four orders of magnitude; a fractional power function provides appropriate weighting giving success in parameter estimation despite the wide range.
非线性最小二乘优化最常用于将复杂模型拟合到一组数据。普通的非线性最小二乘优化器假定所有数据点的方差恒定。本文提出了SENSOP,一种加权非线性最小二乘优化器,它设计用于将模型拟合到一组方差可能恒定也可能不恒定的数据。它使用Levenberg-Marquardt方法的一个变体来计算参数向量中步长变化的方向和长度。估计适当加权函数的方法通常适用于一维信号,也可用于更高维信号。多示踪剂流出稀释曲线集存在特殊问题,因为数据涵盖三到四个数量级;尽管范围很宽,但分数幂函数提供了适当的加权,在参数估计中取得了成功。