Kuwabara H, Gjedde A
Positron Imaging Laboratories, McConnell Brain Imaging Center, Montreal Neurological Institute, Canada.
J Nucl Med. 1991 Apr;32(4):692-8.
To improve the measurements of glucose metabolism in the human brain, we imposed biologic constraints on the deoxyglucose model with and without dephosphorylation of FDG-6-phosphate (the k4*- and k3*-models). The constraints included constant transport and phosphorylation ratios (tau and phi) and a common partition volume (K1/k2) for tracer [18F]FDG and glucose. In the presence of significant dephosphorylation, the k3*-model yielded time-dependent estimates of the phosphorylation coefficient (k3*), while the K4*-model yielded time-independent estimates. However, the two models yielded practically identical measurements of regional cerebral glucose metabolism in PET studies of six normal volunteers when the phosphorylation affinity ratio (the k3*/k3 ratio of FDG and glucose) and tracer circulation time were 0.30 and 20 min for the k3*-model and 0.33 and 45 min for the k4*-model.
为了改进人脑葡萄糖代谢的测量方法,我们对脱氧葡萄糖模型施加了生物学限制,该模型考虑了6-磷酸氟代脱氧葡萄糖(FDG-6-磷酸)去磷酸化和不去磷酸化的情况(k4模型和k3模型)。这些限制包括恒定的转运和磷酸化比率(τ和φ)以及示踪剂[18F]FDG和葡萄糖的共同分布容积(K1/k2)。在存在显著去磷酸化的情况下,k3模型产生了磷酸化系数(k3)的时间依赖性估计值,而K4模型产生了与时间无关的估计值。然而,在对六名正常志愿者进行的PET研究中,当k3模型的磷酸化亲和力比率(FDG与葡萄糖的k3*/k3比率)和示踪剂循环时间分别为0.30和20分钟,k4*模型的磷酸化亲和力比率和示踪剂循环时间分别为0.33和45分钟时,这两种模型得出的区域脑葡萄糖代谢测量值实际上是相同的。