Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS, 39762, USA.
Plant Physiol Biochem. 2010 Feb-Mar;48(2-3):176-93. doi: 10.1016/j.plaphy.2009.12.003. Epub 2010 Jan 4.
The plant parasitic nematode, Heterodera glycines is the major pathogen of Glycine max (soybean). H. glycines accomplish parasitism by creating a nurse cell known as the syncytium from which it feeds. The syncytium undergoes two developmental phases. The first is a parasitism phase where feeding sites are selected, initiating the development of the syncytium. During this earlier phase (1-4 days post infection), syncytia undergoing resistant and susceptible reactions appear the same. The second phase is when the resistance response becomes evident (between 4 and 6dpi) and is completed by 9dpi. Analysis of the resistant reaction of G. max genotype PI 88788 (G. max([PI 88788])) to H. glycines population NL1-RHg/HG-type 7 (H. glycines([NL1-RHg/HG-type 7])) is accomplished by laser microdissection of syncytia at 3, 6 and 9dpi. Comparative analyses are made to pericycle and their neighboring cells isolated from mock-inoculated roots. These analyses reveal induced levels of the jasmonic acid biosynthesis and 13-lipoxygenase pathways. Direct comparative analyses were also made of syncytia at 6 days post infection to those at 3dpi (base line). The comparative analyses were done to identify localized gene expression that characterizes the resistance phase of the resistant reaction. The most highly induced pathways include components of jasmonic acid biosynthesis, 13-lipoxygenase pathway, S-adenosyl methionine pathway, phenylpropanoid biosynthesis, suberin biosynthesis, adenosylmethionine biosynthesis, ethylene biosynthesis from methionine, flavonoid biosynthesis and the methionine salvage pathway. In comparative analyses of 9dpi to 6dpi (base line), these pathways, along with coumarin biosynthesis, cellulose biosynthesis and homogalacturonan degradation are induced. The experiments presented here strongly implicate the jasmonic acid defense pathway as a factor involved in the localized resistant reaction of G. max([PI 88788]) to H. glycines([NL1-RHg/HG-type 7]).
植物寄生线虫大豆胞囊线虫是大豆(大豆)的主要病原体。H. glycines 通过创建称为合胞体的营养细胞来完成寄生,它从中获取营养。合胞体经历两个发育阶段。第一阶段是寄生阶段,在此期间选择取食部位,开始合胞体的发育。在这个早期阶段(感染后 1-4 天),表现出抗性和敏感性反应的合胞体看起来相同。第二阶段是抗性反应变得明显(在 4 到 6dpi 之间),并在 9dpi 时完成。对大豆基因型 PI 88788(大豆([PI 88788]))对 H. glycines 种群 NL1-RHg/HG-type 7(大豆胞囊线虫([NL1-RHg/HG-type 7]))的抗性反应的分析是通过在 3、6 和 9dpi 时对合胞体进行激光微切割来完成的。对来自模拟接种根的周皮及其邻近细胞进行了比较分析。这些分析揭示了茉莉酸生物合成和 13-脂氧合酶途径的诱导水平。还对感染后 6 天的合胞体与 3dpi(基线)的合胞体进行了直接比较分析。进行了比较分析以确定表征抗性反应抗性阶段的局部基因表达。诱导水平最高的途径包括茉莉酸生物合成、13-脂氧合酶途径、S-腺苷甲硫氨酸途径、苯丙烷生物合成、亚表皮生物合成、腺苷甲硫氨酸生物合成、甲硫氨酸从蛋氨酸生成乙烯、类黄酮生物合成和蛋氨酸回收途径。在 9dpi 与 6dpi(基线)的比较分析中,这些途径以及香豆素生物合成、纤维素生物合成和半乳糖醛酸降解被诱导。这里提出的实验强烈表明,茉莉酸防御途径是大豆([PI 88788])对 H. glycines([NL1-RHg/HG-type 7])局部抗性反应的一个因素。