World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
Adv Colloid Interface Sci. 2010 Feb 26;154(1-2):20-9. doi: 10.1016/j.cis.2010.01.005. Epub 2010 Jan 20.
Top-down nanofabrication techniques, especially photolithography, have advanced nanotechnology to a point where system-process integration with bottom-up self-assembly is now required. Because most lithographic techniques are constrained to two-dimensional planes, investigation of integrated self-assembly systems should focus on two-dimensional organization. In this review, research on two-dimensional nanoartchitectonics is classified and summarized according to the type of interface used. Pattern formation following deposition of vaporized molecules onto a solid surface can be analyzed with high structural precision using scanning probe microscopy under ultra high vacuum. Transitions of adsorbed phases and adjustment of pattern mismatch by conformational changes of adsorbed molecules are discussed, in addition to the forces constraining pattern formation, i.e., two-dimensional hydrogen bond networks, van der Waals forces, and molecule-surface interactions. Molecular deposition at a liquid-solid interface broadens the range of molecules that can be investigated. The more complex molecules discussed in this work are C(60)-fullerene derivatives and designer DNA strands. Gas-liquid interfaces, e.g. between air and water, allow dynamic formations that can adjust to molecular conformational changes. In this case, any resulting patterns can be modulated by varying conditions macroscopically. Using flexible molecules at the fluid air-water interface also permits dynamic operation of molecular machines by macroscopic mechanical motion, thus enabling, hand-operated nanotechnology.
自上而下的纳米制造技术,特别是光刻技术,已经将纳米技术推进到需要与自下而上的自组装进行系统级工艺集成的地步。由于大多数光刻技术都局限于二维平面,因此,对集成自组装系统的研究应该集中在二维组织上。在这篇综述中,根据所使用的界面类型对二维纳米结构进行了分类和总结。在超高真空下,利用扫描探针显微镜可以对蒸发性分子沉积到固体表面后的图案形成进行高精度的结构分析。除了限制图案形成的力(二维氢键网络、范德华力和分子-表面相互作用)外,还讨论了吸附相的转变和通过吸附分子的构象变化来调整图案不匹配的问题。在固-液界面上进行分子沉积拓宽了可研究的分子范围。本文讨论的更复杂的分子是 C(60)-富勒烯衍生物和设计 DNA 链。气-液界面,例如空气和水之间的界面,允许进行可适应分子构象变化的动态形成。在这种情况下,可以通过宏观地改变条件来调节任何产生的图案。在流体空气-水界面上使用柔性分子也允许通过宏观机械运动来对分子机器进行动态操作,从而实现手动纳米技术。