Suppr超能文献

生物网络的数据集成与分析。

Data integration and analysis of biological networks.

机构信息

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.

出版信息

Curr Opin Biotechnol. 2010 Feb;21(1):78-84. doi: 10.1016/j.copbio.2010.01.003. Epub 2010 Feb 6.

Abstract

During the past decade, bottom-up and top-down approaches of network reconstruction have greatly facilitated integration and analysis of biological networks, including transcriptional, protein interaction, and metabolic networks. As increasing amounts of multidimensional high-throughput data become available, biological networks have also been upgraded, allowing more accurate understanding of whole cellular characteristics. The network size is constantly expanding as larger volume of information and omics data are further integrated into the biological networks previously built upon a single type of data. Such effort more recently led to the modeling of human metabolic network and prediction of its tissue-specific metabolism, reconstruction of consensus yeast metabolic network, and simulation of mutual interactions among multiple microorganisms. It is expected that this trend will continue, the outcomes of which will allow development of more sophisticated networks integrating diverse omics data, and enhance our understanding of biological systems.

摘要

在过去的十年中,网络重建的自下而上和自上而下的方法极大地促进了生物网络的整合和分析,包括转录、蛋白质相互作用和代谢网络。随着越来越多的多维高通量数据的出现,生物网络也得到了升级,从而能够更准确地了解整个细胞的特征。随着更多的信息和组学数据进一步整合到以前基于单一类型数据构建的生物网络中,网络的规模不断扩大。最近,这一努力导致了人类代谢网络的建模和其组织特异性代谢的预测、共识酵母代谢网络的重建以及多个微生物之间相互作用的模拟。预计这种趋势将继续下去,其结果将允许开发更多复杂的网络,整合各种组学数据,并增强我们对生物系统的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验