Suppr超能文献

生物数据整合方法:观点与挑战

Methods for biological data integration: perspectives and challenges.

作者信息

Gligorijević Vladimir, Pržulj Nataša

机构信息

Department of Computing, Imperial College London, London SW7 2AZ, UK.

Department of Computing, Imperial College London, London SW7 2AZ, UK

出版信息

J R Soc Interface. 2015 Nov 6;12(112). doi: 10.1098/rsif.2015.0571.

Abstract

Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development.

摘要

快速的技术进步导致了不同类型生物数据的产生,并使得构建具有不同生物实体之间各种相互作用的复杂网络成为可能。标准的网络数据分析方法在处理此类异构网络数据时显示出局限性,因此,人们提出了用于综合数据分析的新方法。这些综合方法可以共同挖掘多种类型的生物数据,并产生更全面的、系统层面的生物学见解。我们综述了近期用于各种类型网络化生物数据的集体挖掘(整合)方法。我们比较了不同的最新数据整合方法,并突出了它们在解决重要生物学问题方面的优缺点。我们确定了这些方法面临的重要计算挑战,并为哪些方法适用于特定生物学问题或特定数据类型提供了一般指导方针。此外,我们提出,近期基于非负矩阵分解的方法可能会成为首选的整合方法,因为它们非常适合处理异构数据且准确,并且有许多进一步发展的机会。

相似文献

1
Methods for biological data integration: perspectives and challenges.
J R Soc Interface. 2015 Nov 6;12(112). doi: 10.1098/rsif.2015.0571.
2
Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis.
Front Genet. 2020 Jan 28;10:1381. doi: 10.3389/fgene.2019.01381. eCollection 2019.
4
Independent Component Analysis for Unraveling the Complexity of Cancer Omics Datasets.
Int J Mol Sci. 2019 Sep 7;20(18):4414. doi: 10.3390/ijms20184414.
5
DrugNet: network-based drug-disease prioritization by integrating heterogeneous data.
Artif Intell Med. 2015 Jan;63(1):41-9. doi: 10.1016/j.artmed.2014.11.003. Epub 2015 Jan 13.
6
Integrative approaches to reconstruct regulatory networks from multi-omics data: A review of state-of-the-art methods.
Comput Biol Chem. 2019 Dec;83:107120. doi: 10.1016/j.compbiolchem.2019.107120. Epub 2019 Sep 6.
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
8
Neural Collective Matrix Factorization for integrated analysis of heterogeneous biomedical data.
Bioinformatics. 2022 Sep 30;38(19):4554-4561. doi: 10.1093/bioinformatics/btac543.
9
Text Mining for Building Biomedical Networks Using Cancer as a Case Study.
Biomolecules. 2021 Sep 29;11(10):1430. doi: 10.3390/biom11101430.
10
Computational approaches for network-based integrative multi-omics analysis.
Front Mol Biosci. 2022 Nov 14;9:967205. doi: 10.3389/fmolb.2022.967205. eCollection 2022.

引用本文的文献

2
Towards the Generation of Medical Imaging Classifiers Robust to Common Perturbations.
BioMedInformatics. 2024 Jun;4(2):889-910. doi: 10.3390/biomedinformatics4020050. Epub 2024 Apr 1.
4
A computational framework for extracting biological insights from SRA cancer data.
Sci Rep. 2025 Mar 8;15(1):8117. doi: 10.1038/s41598-025-91781-8.
5
Simplicity within biological complexity.
Bioinform Adv. 2025 Feb 6;5(1):vbae164. doi: 10.1093/bioadv/vbae164. eCollection 2025.
7
Prediction of future dementia among patients with mild cognitive impairment (MCI) by integrating multimodal clinical data.
Heliyon. 2024 Aug 22;10(17):e36728. doi: 10.1016/j.heliyon.2024.e36728. eCollection 2024 Sep 15.
8
Constructing a Clinical Patient Similarity Network of Gastric Cancer.
Bioengineering (Basel). 2024 Aug 9;11(8):808. doi: 10.3390/bioengineering11080808.
9
Current and future directions in network biology.
Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.

本文引用的文献

1
Data Fusion by Matrix Factorization.
IEEE Trans Pattern Anal Mach Intell. 2015 Jan;37(1):41-53. doi: 10.1109/TPAMI.2014.2343973.
4
A copy number variation map of the human genome.
Nat Rev Genet. 2015 Mar;16(3):172-83. doi: 10.1038/nrg3871. Epub 2015 Feb 3.
5
Integration of molecular network data reconstructs Gene Ontology.
Bioinformatics. 2014 Sep 1;30(17):i594-600. doi: 10.1093/bioinformatics/btu470.
7
The integrated disease network.
Integr Biol (Camb). 2014 Nov;6(11):1069-79. doi: 10.1039/c4ib00122b.
8
Kernel methods for large-scale genomic data analysis.
Brief Bioinform. 2015 Mar;16(2):183-92. doi: 10.1093/bib/bbu024. Epub 2014 Jul 22.
9
Data integration in the era of omics: current and future challenges.
BMC Syst Biol. 2014;8 Suppl 2(Suppl 2):I1. doi: 10.1186/1752-0509-8-S2-I1. Epub 2014 Mar 13.
10
Principles and methods of integrative genomic analyses in cancer.
Nat Rev Cancer. 2014 May;14(5):299-313. doi: 10.1038/nrc3721.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验