Division of Academic Radiology, School of Clinical Sciences, University of Nottingham, Nottingham, UK.
Neuroimage. 2010 Oct 15;53(1):239-46. doi: 10.1016/j.neuroimage.2010.06.002. Epub 2010 Jun 9.
The last two decades have witnessed great progress in mapping neural networks associated with task-induced brain activation. More recently, identification of resting state networks (RSN) paved the way to investigate spontaneous task-unrelated brain activity. The cardinal features characterising RSN are low-frequency fluctuations of blood oxygenation level dependent (BOLD) signals synchronised between spatially distinct, but functionally connected brain areas. Simultaneous EEG/fMRI has been previously deployed to study the neurophysiological signature of RSN by comparing EEG power with BOLD amplitudes. We hypothesised that band-limited EEG power may be directly related to network-specific functional connectivity (FC) of BOLD signal time courses. Hence, we studied the association between individual EEG signature and FC in a core RSN, the so-called default mode network (DMN). Combined EEG/fMRI data of 20 healthy volunteers collected during a 15-minute rest period were analysed. Using an inter-subject analysis design, we demonstrated a network and frequency specific relation between RSN FC and EEG. In a multiple regression model, EEG band-powers explained 70% of DMN FC variance, with significant partial correlations of DMN FC to delta (r=-0.73) and beta (r=0.53) power. The identified EEG pattern has been previously associated with increased alertness. Conversely, an established EEG-derived sedation index (spectral edge frequency SEF95) closely correlated with DMN FC. The study presents an approach that opens a new perspective to EEG/fMRI correlation. Direct evidence was provided for a distinct neurophysiological correlate of DMN FC. This finding further validates the biological relevance of network-specific intrinsic FC and provides an initial neurophysiological basis for interpreting studies of DMN FC alterations.
过去二十年见证了映射与任务诱导脑激活相关的神经网络的巨大进展。最近,静息态网络(RSN)的鉴定为研究与任务无关的自发脑活动铺平了道路。RSN 的主要特征是血氧水平依赖(BOLD)信号在空间上不同但功能上连接的脑区之间的低频波动。先前已经部署了同时 EEG/fMRI 来通过比较 EEG 功率与 BOLD 幅度来研究 RSN 的神经生理特征。我们假设带限 EEG 功率可能与 BOLD 信号时间过程的特定网络功能连接(FC)直接相关。因此,我们研究了个体 EEG 特征与核心 RSN(即所谓的默认模式网络(DMN))FC 之间的关联。对 20 名健康志愿者在 15 分钟休息期间采集的组合 EEG/fMRI 数据进行了分析。使用受试者间分析设计,我们证明了 RSN FC 和 EEG 之间存在网络和频率特异性关系。在多元回归模型中,EEG 波段功率解释了 DMN FC 方差的 70%,DMN FC 与 delta(r=-0.73)和 beta(r=0.53)功率之间存在显著的部分相关。所确定的 EEG 模式以前与警觉性增加有关。相反,一种既定的 EEG 衍生镇静指数(频谱边缘频率 SEF95)与 DMN FC 密切相关。该研究提出了一种新的 EEG/fMRI 相关性方法。为 DMN FC 的特定神经生理相关性提供了直接证据。这一发现进一步验证了网络特定内在 FC 的生物学相关性,并为解释 DMN FC 改变的研究提供了初步的神经生理基础。