Suppr超能文献

聚电解质介导的多壁碳纳米管在活酵母细胞上的组装。

Polyelectrolyte-mediated assembly of multiwalled carbon nanotubes on living yeast cells.

机构信息

Department of Biochemistry, Kazan State University, Kazan, 420008, Tatarstan, Russian Federation.

出版信息

Langmuir. 2010 Feb 16;26(4):2671-9. doi: 10.1021/la902937s.

Abstract

Here we report the three-dimensional assembly of carbon nanotubes on the polyelectrolyte-coated living Saccharomyces cerevisiae cells using the polyelectrolyte-mediated layer-by-layer approach. Synthetic polyelectrolytes poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) were layer-by-layer deposited on the surfaces of the yeast cells followed by the deposition of water-soluble oxidized multiwalled carbon nanotubes (MWNTs) and an additional outermost polyelectrolyte bilayer. This resulted in the fabrication of polyelectrolyte/nanotubes composite coatings on the cell walls of the yeast cells, which could be clearly seen using the conventional optical microscopy. Transmission and scanning electron microscopy was applied to further investigate the composite coatings. Viability of the encapsulated cells was confirmed using the intercellular esterase activity test. Finally, electrochemical studies using voltammetry and electrochemical impedance measurements were performed, indicating that the composite polyelectrolytes/MWNTs coatings sufficiently affect the electron mediation between the encapsulated yeast cells and the artificial electron acceptor, making it possible to distinguish between living and dead cells. The technique described here may find potential application in the development of microelectronic devices, core-shell and hollow composite microparticles, and electrochemical cell-based biosensors.

摘要

在这里,我们使用聚电解质介导的层层自组装方法,报道了碳纳米管在带负电荷的活酿酒酵母细胞上的三维组装。合成聚电解质聚(盐酸烯丙胺)和聚(4-苯乙烯磺酸钠)被层层沉积在酵母细胞表面,然后再沉积水溶性氧化多壁碳纳米管(MWNTs)和额外的最外层聚电解质双层。这导致了在酵母细胞壁上制备了聚电解质/纳米管复合涂层,可以通过传统的光学显微镜清楚地看到。透射电子显微镜和扫描电子显微镜被用来进一步研究复合涂层。使用细胞间酯酶活性测试来确认被包封细胞的活力。最后,使用伏安法和电化学阻抗测量进行了电化学研究,表明复合聚电解质/MWNTs 涂层足以影响被包封的酵母细胞与人工电子受体之间的电子传递,从而有可能区分活细胞和死细胞。这里描述的技术可能在微电子器件、核壳和中空复合微球以及基于电化学池的生物传感器的开发中具有潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验