Suppr超能文献

慢性阻塞性肺疾病加重期存在持续且多样的气道微生物群。

A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations.

机构信息

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, California 94143-0538, USA.

出版信息

OMICS. 2010 Feb;14(1):9-59. doi: 10.1089/omi.2009.0100.

Abstract

Acute exacerbations of chronic obstructive pulmonary disease (COPD) are a major source of morbidity and contribute significantly to healthcare costs. Although bacterial infections are implicated in nearly 50% of exacerbations, only a handful of pathogens have been consistently identified in COPD airways, primarily by culture-based methods, and the bacterial microbiota in acute exacerbations remains largely uncharacterized. The aim of this study was to comprehensively profile airway bacterial communities using a culture-independent microarray, the 16S rRNA PhyloChip, of a cohort of COPD patients requiring ventilatory support and antibiotic therapy for exacerbation-related respiratory failure. PhyloChip analysis revealed the presence of over 1,200 bacterial taxa representing 140 distinct families, many previously undetected in airway diseases; bacterial community composition was strongly influenced by the duration of intubation. A core community of 75 taxa was detected in all patients, many of which are known pathogens. Bacterial community diversity in COPD airways is substantially greater than previously recognized and includes a number of potential pathogens detected in the setting of antibiotic exposure. Comprehensive assessment of the COPD airway microbiota using high-throughput, culture-independent methods may prove key to understanding the relationships between airway bacterial colonization, acute exacerbation, and clinical outcomes in this and other chronic inflammatory airway diseases.

摘要

慢性阻塞性肺疾病(COPD)的急性加重是发病率的主要来源,并对医疗保健成本有重大影响。虽然细菌感染在近 50%的加重中起作用,但仅有少数病原体通过基于培养的方法在 COPD 气道中得到一致鉴定,急性加重时的细菌微生物群仍在很大程度上未被描述。本研究的目的是使用一种非培养依赖性微阵列(16S rRNA PhyloChip)全面分析需要通气支持和抗生素治疗以治疗与加重相关的呼吸衰竭的 COPD 患者队列的气道细菌群落。PhyloChip 分析显示存在超过 1200 个细菌分类群,代表 140 个不同的家族,其中许多以前在气道疾病中未被发现;细菌群落组成强烈受插管时间的影响。在所有患者中都检测到了一个由 75 个分类群组成的核心群落,其中许多是已知的病原体。COPD 气道中的细菌群落多样性比以前认识到的要大得多,包括在抗生素暴露环境中检测到的一些潜在病原体。使用高通量、非培养依赖性方法全面评估 COPD 气道微生物群可能是理解气道细菌定植、急性加重和该疾病及其他慢性炎症性气道疾病中临床结果之间关系的关键。

相似文献

2
Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease.
J Clin Microbiol. 2014 Aug;52(8):2813-23. doi: 10.1128/JCM.00035-14. Epub 2014 May 21.
3
The Sputum Microbiome in Chronic Obstructive Pulmonary Disease Exacerbations.
Ann Am Thorac Soc. 2015 Nov;12 Suppl 2(Suppl 2):S176-80. doi: 10.1513/AnnalsATS.201506-319AW.
6
Saliva as a non-invasive specimen for COPD assessment.
Respir Res. 2022 Jan 29;23(1):16. doi: 10.1186/s12931-022-01935-9.
8
Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease.
J Clin Microbiol. 2012 Nov;50(11):3562-8. doi: 10.1128/JCM.00767-12. Epub 2012 Aug 22.
9
Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease.
PLoS One. 2014 Oct 16;9(10):e109710. doi: 10.1371/journal.pone.0109710. eCollection 2014.
10
The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease.
Microbiome. 2018 Jan 9;6(1):7. doi: 10.1186/s40168-017-0381-4.

引用本文的文献

2
Chronic Cavitary Pulmonary Histoplasmosis-Novel Concepts Regarding Pathogenesis.
J Fungi (Basel). 2025 Mar 5;11(3):201. doi: 10.3390/jof11030201.
3
Macrophages and the microbiome in chronic obstructive pulmonary disease.
Eur Respir Rev. 2024 Dec 4;33(174). doi: 10.1183/16000617.0053-2024. Print 2024 Oct.
4
The Metabolic Potential of the Human Lung Microbiome.
Microorganisms. 2024 Jul 17;12(7):1448. doi: 10.3390/microorganisms12071448.
5
Host tracheal and intestinal microbiomes inhibit growth .
Microbiol Spectr. 2024 Jul 2;12(7):e0297823. doi: 10.1128/spectrum.02978-23. Epub 2024 Jun 4.
8
The Role of Lung Microbiome in Fibrotic Interstitial Lung Disease-A Systematic Review.
Biomolecules. 2024 Feb 20;14(3):247. doi: 10.3390/biom14030247.
9
First Exploration of the Altered Microbial Gut-Lung Axis in the Pathogenesis of Human Refractory Chronic Cough.
Lung. 2024 Apr;202(2):107-118. doi: 10.1007/s00408-024-00681-7. Epub 2024 Mar 25.
10
Bacterial Vaccinations in Patients with Chronic Obstructive Pulmonary Disease.
Vaccines (Basel). 2024 Feb 18;12(2):213. doi: 10.3390/vaccines12020213.

本文引用的文献

2
FastTree: computing large minimum evolution trees with profiles instead of a distance matrix.
Mol Biol Evol. 2009 Jul;26(7):1641-50. doi: 10.1093/molbev/msp077. Epub 2009 Apr 17.
3
Infection in the pathogenesis and course of chronic obstructive pulmonary disease.
N Engl J Med. 2008 Nov 27;359(22):2355-65. doi: 10.1056/NEJMra0800353.
5
Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease.
Clin Infect Dis. 2008 Dec 15;47(12):1526-33. doi: 10.1086/593186.
7
Leptospirosis pulmonary haemorrhage: a diagnostic challenge.
Emerg Med J. 2008 Jan;25(1):51-2. doi: 10.1136/emj.2007.051524.
8
Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20529-33. doi: 10.1073/pnas.0709804104. Epub 2007 Dec 11.
9
An ecological and evolutionary perspective on human-microbe mutualism and disease.
Nature. 2007 Oct 18;449(7164):811-8. doi: 10.1038/nature06245.
10
The epidemiology and economics of chronic obstructive pulmonary disease.
Proc Am Thorac Soc. 2007 Oct 1;4(7):502-6. doi: 10.1513/pats.200701-001FM.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验