Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, California 94143-0538, USA.
OMICS. 2010 Feb;14(1):9-59. doi: 10.1089/omi.2009.0100.
Acute exacerbations of chronic obstructive pulmonary disease (COPD) are a major source of morbidity and contribute significantly to healthcare costs. Although bacterial infections are implicated in nearly 50% of exacerbations, only a handful of pathogens have been consistently identified in COPD airways, primarily by culture-based methods, and the bacterial microbiota in acute exacerbations remains largely uncharacterized. The aim of this study was to comprehensively profile airway bacterial communities using a culture-independent microarray, the 16S rRNA PhyloChip, of a cohort of COPD patients requiring ventilatory support and antibiotic therapy for exacerbation-related respiratory failure. PhyloChip analysis revealed the presence of over 1,200 bacterial taxa representing 140 distinct families, many previously undetected in airway diseases; bacterial community composition was strongly influenced by the duration of intubation. A core community of 75 taxa was detected in all patients, many of which are known pathogens. Bacterial community diversity in COPD airways is substantially greater than previously recognized and includes a number of potential pathogens detected in the setting of antibiotic exposure. Comprehensive assessment of the COPD airway microbiota using high-throughput, culture-independent methods may prove key to understanding the relationships between airway bacterial colonization, acute exacerbation, and clinical outcomes in this and other chronic inflammatory airway diseases.
慢性阻塞性肺疾病(COPD)的急性加重是发病率的主要来源,并对医疗保健成本有重大影响。虽然细菌感染在近 50%的加重中起作用,但仅有少数病原体通过基于培养的方法在 COPD 气道中得到一致鉴定,急性加重时的细菌微生物群仍在很大程度上未被描述。本研究的目的是使用一种非培养依赖性微阵列(16S rRNA PhyloChip)全面分析需要通气支持和抗生素治疗以治疗与加重相关的呼吸衰竭的 COPD 患者队列的气道细菌群落。PhyloChip 分析显示存在超过 1200 个细菌分类群,代表 140 个不同的家族,其中许多以前在气道疾病中未被发现;细菌群落组成强烈受插管时间的影响。在所有患者中都检测到了一个由 75 个分类群组成的核心群落,其中许多是已知的病原体。COPD 气道中的细菌群落多样性比以前认识到的要大得多,包括在抗生素暴露环境中检测到的一些潜在病原体。使用高通量、非培养依赖性方法全面评估 COPD 气道微生物群可能是理解气道细菌定植、急性加重和该疾病及其他慢性炎症性气道疾病中临床结果之间关系的关键。