Suppr超能文献

具有部分相关神经元积分器的扩散模型中的决策置信度和不确定性。

Decision confidence and uncertainty in diffusion models with partially correlated neuronal integrators.

机构信息

Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.

出版信息

Neural Comput. 2010 Jul;22(7):1786-811. doi: 10.1162/neco.2010.12-08-930.

Abstract

Diffusion models have become essential for describing the performance and statistics of reaction times in human decision making. Despite their success, it is not known how to evaluate decision confidence from them. I introduce a broader class of models consisting of two partially correlated neuronal integrators with arbitrarily time-varying decision boundaries that allow a natural description of confidence. The dependence of decision confidence on the state of the losing integrator, decision time, time-varying boundaries, and correlations is analytically described. The marginal confidence is computed for the half-anticorrelated case using the exact solution of the diffusion process with constant boundaries and compared to that of the independent and completely anticorrelated cases.

摘要

扩散模型已成为描述人类决策中反应时间的性能和统计数据的重要工具。尽管它们取得了成功,但尚不清楚如何从这些模型中评估决策信心。我引入了一类更广泛的模型,由两个具有任意时变决策边界的部分相关神经元积分器组成,该模型可以对信心进行自然描述。决策信心对失败积分器的状态、决策时间、时变边界和相关性的依赖性进行了分析描述。使用具有常数边界的扩散过程的精确解计算了半反相关情况下的边缘置信度,并将其与独立和完全反相关情况下的置信度进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验