Brain and Cognition, KU Leuven, Leuven, Belgium.
Department of Experimental Psychology, Ghent University, Ghent Belgium.
PLoS Comput Biol. 2024 Jul 24;20(7):e1012273. doi: 10.1371/journal.pcbi.1012273. eCollection 2024 Jul.
Human decision making is accompanied by a sense of confidence. According to Bayesian decision theory, confidence reflects the learned probability of making a correct response, given available data (e.g., accumulated stimulus evidence and response time). Although optimal, independently learning these probabilities for all possible data combinations is computationally intractable. Here, we describe a novel model of confidence implementing a low-dimensional approximation of this optimal yet intractable solution. This model allows efficient estimation of confidence, while at the same time accounting for idiosyncrasies, different kinds of biases and deviation from the optimal probability correct. Our model dissociates confidence biases resulting from the estimate of the reliability of evidence by individuals (captured by parameter α), from confidence biases resulting from general stimulus independent under and overconfidence (captured by parameter β). We provide empirical evidence that this model accurately fits both choice data (accuracy, response time) and trial-by-trial confidence ratings simultaneously. Finally, we test and empirically validate two novel predictions of the model, namely that 1) changes in confidence can be independent of performance and 2) selectively manipulating each parameter of our model leads to distinct patterns of confidence judgments. As a tractable and flexible account of the computation of confidence, our model offers a clear framework to interpret and further resolve different forms of confidence biases.
人类的决策伴随着信心。根据贝叶斯决策理论,信心反映了在给定可用数据(例如,累积的刺激证据和反应时间)的情况下正确做出反应的习得概率。尽管这是最优的,但独立地学习所有可能的数据组合的这些概率在计算上是难以处理的。在这里,我们描述了一种新的置信度模型,该模型实现了这种最优但难以处理的解决方案的低维近似。该模型允许对置信度进行有效估计,同时考虑到个体对证据可靠性的估计所产生的特殊性、各种偏差和与最优概率正确的偏差。我们的模型将由个体对证据可靠性的估计引起的置信偏差(由参数 α 捕获)与由与刺激无关的普遍过度自信和不足自信引起的置信偏差(由参数 β 捕获)区分开来。我们提供了经验证据表明,该模型可以准确地同时拟合选择数据(准确性、反应时间)和逐次信心评分。最后,我们测试并实证验证了该模型的两个新预测,即 1)信心的变化可以独立于表现,以及 2)选择性地操纵我们模型的每个参数会导致不同的信心判断模式。作为对置信度计算的可行且灵活的解释,我们的模型提供了一个清晰的框架来解释和进一步解决不同形式的置信偏差。