Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim ad Ruhr, Germany.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4123-8. doi: 10.1073/pnas.0905407107. Epub 2010 Feb 8.
Photosystem I (PSI) is a large pigment-protein complex that unites a reaction center (RC) at the core with approximately 100 core antenna chlorophylls surrounding it. The RC is composed of two cofactor branches related by a pseudo-C2 symmetry axis. The ultimate electron donor, P(700) (a pair of chlorophylls), and the tertiary acceptor, F(X) (a Fe(4)S(4) cluster), are both located on this axis, while each of the two branches is made up of a pair of chlorophylls (ec2 and ec3) and a phylloquinone (PhQ). Based on the observed biphasic reduction of F(X), it has been suggested that both branches in PSI are competent for electron transfer (ET), but the nature and rate of the initial electron transfer steps have not been established. We report an ultrafast transient absorption study of Chlamydomonas reinhardtii mutants in which specific amino acids donating H-bonds to the 13(1)-keto oxygen of either ec3(A) (PsaA-Tyr696) or ec3(B) (PsaB-Tyr676) are converted to Phe, thus breaking the H-bond to a specific ec3 cofactor. We find that the rate of primary charge separation (CS) is lowered in both mutants, providing direct evidence that the primary ET event can be initiated independently in each branch. Furthermore, the data provide further support for the previously published model in which the initial CS event occurs within an ec2/ec3 pair, generating a primary ec2(+)ec3(-) radical pair, followed by rapid reduction by P(700) in the second ET step. A unique kinetic modeling approach allows estimation of the individual ET rates within the two cofactor branches.
光系统 I(PSI)是一个大型的色素-蛋白复合物,它将一个位于核心的反应中心(RC)与周围约 100 个核心天线叶绿素结合在一起。RC 由通过伪 C2 对称轴相关的两个辅助因子分支组成。最终电子供体 P(700)(一对叶绿素)和三级受体 F(X)(一个 Fe(4)S(4)簇)都位于该轴上,而每个分支由一对叶绿素(ec2 和 ec3)和一个叶绿醌(PhQ)组成。根据观察到的 F(X)的两相还原,有人提出 PSI 中的两个分支都有能力进行电子转移(ET),但初始电子转移步骤的性质和速率尚未确定。我们报告了对莱茵衣藻突变体的超快瞬态吸收研究,其中特定的氨基酸与 ec3(A)(PsaA-Tyr696)或 ec3(B)(PsaB-Tyr676)的 13(1)-酮氧形成氢键的氨基酸被转化为苯丙氨酸,从而破坏了与特定 ec3 辅助因子的氢键。我们发现,在两种突变体中,初级电荷分离(CS)的速率都降低了,这直接证明了初级 ET 事件可以在每个分支中独立启动。此外,这些数据为之前发表的模型提供了进一步的支持,该模型认为初始 CS 事件发生在 ec2/ec3 对中,生成一个初级 ec2(+)ec3(-)自由基对,然后在第二个 ET 步骤中由 P(700)快速还原。一种独特的动力学建模方法允许估计两个辅助因子分支内的个体 ET 速率。