Suppr超能文献

EyePACS:一种用于糖尿病视网膜病变筛查的适应性远程医疗系统。

EyePACS: an adaptable telemedicine system for diabetic retinopathy screening.

作者信息

Cuadros Jorge, Bresnick George

机构信息

University of California, Berkeley, Meredith Morgan Optometric Eye Center, Berkeley, CA 94720, USA.

出版信息

J Diabetes Sci Technol. 2009 May 1;3(3):509-16. doi: 10.1177/193229680900300315.

Abstract

BACKGROUND

Annual retinal screening of patients with diabetes is the standard clinical practice to prevent visual impairment and blindness from diabetic retinopathy. Telemedicine-based diabetic retinopathy screening (DRS) in primary care settings can effectively detect sight-threatening retinopathy and significantly increase compliance with annual retinal exams. EyePACS is a license-free Web-based DRS system designed to simplify the process of image capture, transmission, and review. The system provides a flexible platform for collaboration among clinicians about diabetic retinopathy.

METHODS

Primary clinic personnel (i.e., nursing, technical, or administrative staff) are trained and certified by the EyePACS program to acquire retinal images from standard digital retinal cameras. Relevant clinical data and eight high-resolution images per patient (two external and six retinal images) are encrypted and transmitted to a secure Internet server, using a standard computer and Web browser. Images are then interpreted by certified EyePACS reviewers or local eye care providers who are certified through the EyePACS Retinopathy Grading System. Reports indicating retinopathy level and referral recommendations are transmitted back to primary care providers through the EyePACS Web site or through interfaces between EyePACS and Health Level 7-compliant electronic medical records or chronic disease registries.

RESULTS

The pilot phase of the EyePACS DRS program in California (2005-2006) recorded 3562 encounters. Since 2006, EyePACS has been expanded to over 120 primary care sites throughout California and elsewhere recording over 34,000 DRSs. The overall rate of referral is 8.21% for sight-threatening retinopathy and 7.83% for other conditions (e.g., cataract and glaucoma).

CONCLUSION

The use of license-free Web-based software, standard interfaces, and flexible protocols has allowed primary care providers to adopt retinopathy screening with minimal effort and resources.

摘要

背景

对糖尿病患者进行年度视网膜筛查是预防糖尿病性视网膜病变导致视力损害和失明的标准临床做法。基层医疗环境中基于远程医疗的糖尿病性视网膜病变筛查(DRS)能够有效检测出威胁视力的视网膜病变,并显著提高年度视网膜检查的依从性。EyePACS是一个基于网络的免费DRS系统,旨在简化图像采集、传输和审查流程。该系统为临床医生之间就糖尿病性视网膜病变展开协作提供了一个灵活的平台。

方法

基层诊所人员(即护理、技术或行政人员)接受EyePACS项目的培训并获得认证,以便从标准数字视网膜相机获取视网膜图像。使用标准计算机和网络浏览器,将每位患者的相关临床数据和八张高分辨率图像(两张眼外图像和六张视网膜图像)进行加密并传输至安全的互联网服务器。然后,由获得认证的EyePACS审阅人员或通过EyePACS视网膜病变分级系统认证的当地眼科护理人员对图像进行解读。表明视网膜病变级别和转诊建议的报告通过EyePACS网站或EyePACS与符合健康等级7标准的电子病历或慢性病登记系统之间的接口传输回基层医疗服务提供者。

结果

加利福尼亚州EyePACS DRS项目的试点阶段(2005 - 2006年)记录了3562次诊疗。自2006年以来,EyePACS已扩展至加利福尼亚州及其他地区的120多个基层医疗站点,记录了超过34000次DRS。威胁视力的视网膜病变的总体转诊率为8.21%,其他病症(如白内障和青光眼)的转诊率为7.83%。

结论

使用免费的基于网络的软件、标准接口和灵活的协议,使基层医疗服务提供者能够以最少的精力和资源开展视网膜病变筛查。

相似文献

1
EyePACS: an adaptable telemedicine system for diabetic retinopathy screening.
J Diabetes Sci Technol. 2009 May 1;3(3):509-16. doi: 10.1177/193229680900300315.
3
DrishtiCare: a telescreening platform for diabetic retinopathy powered with fundus image analysis.
J Diabetes Sci Technol. 2011 Jan 1;5(1):23-31. doi: 10.1177/193229681100500104.
4
Diabetic retinopathy screening in urban primary care setting with a handheld smartphone-based retinal camera.
Acta Diabetol. 2020 Dec;57(12):1493-1499. doi: 10.1007/s00592-020-01585-7. Epub 2020 Aug 4.
5
EyePACS: an open source clinical communication system for eye care.
Stud Health Technol Inform. 2004;107(Pt 1):207-11.
6
A Web-based telemedicine system for diabetic retinopathy screening using digital fundus photography.
Telemed J E Health. 2006 Feb;12(1):50-7. doi: 10.1089/tmj.2006.12.50.
8
Blind spots in telemedicine: a qualitative study of staff workarounds to resolve gaps in diabetes management.
BMC Health Serv Res. 2018 Aug 7;18(1):617. doi: 10.1186/s12913-018-3427-9.
9
Screening for diabetic retinopathy: the first telemedicine approach in a primary care setting in Bahrain.
Middle East Afr J Ophthalmol. 2012 Jul-Sep;19(3):295-8. doi: 10.4103/0974-9233.97928.
10
Use of Telehealth Screening to Detect Diabetic Retinopathy and Other Ocular Findings in Primary Care Settings.
Telemed J E Health. 2019 Sep;25(9):802-807. doi: 10.1089/tmj.2018.0016. Epub 2018 Nov 27.

引用本文的文献

1
AI-Assisted identification of sex-specific patterns in diabetic retinopathy using retinal fundus images.
PLoS One. 2025 Aug 7;20(8):e0327305. doi: 10.1371/journal.pone.0327305. eCollection 2025.
2
VascX Models: Deep Ensembles for Retinal Vascular Analysis From Color Fundus Images.
Transl Vis Sci Technol. 2025 Jul 1;14(7):19. doi: 10.1167/tvst.14.7.19.
4
Autonomous Screening for Diabetic Macular Edema Using Deep Learning Processing of Retinal Images.
Ophthalmol Sci. 2025 Jan 31;5(4):100722. doi: 10.1016/j.xops.2025.100722. eCollection 2025 Jul-Aug.
5
Code-Free Deep Learning Glaucoma Detection on Color Fundus Images.
Ophthalmol Sci. 2025 Jan 30;5(4):100721. doi: 10.1016/j.xops.2025.100721. eCollection 2025 Jul-Aug.
6
Enhancing Ophthalmic Diagnosis and Treatment with Artificial Intelligence.
Medicina (Kaunas). 2025 Feb 28;61(3):433. doi: 10.3390/medicina61030433.
8
Color Fundus Photography and Deep Learning Applications in Alzheimer Disease.
Mayo Clin Proc Digit Health. 2024 Dec;2(4):548-558. doi: 10.1016/j.mcpdig.2024.08.005. Epub 2024 Aug 26.
9
A deep learning-based ADRPPA algorithm for the prediction of diabetic retinopathy progression.
Sci Rep. 2024 Dec 30;14(1):31772. doi: 10.1038/s41598-024-82884-9.
10
Representing Part-Whole Hierarchies in Foundation Models by Learning Localizability, Composability, and Decomposability from Anatomy via Self-Supervision.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2024 Jun;abs/210504906(2024):11269-11281. doi: 10.1109/cvpr52733.2024.01071. Epub 2024 Sep 16.

本文引用的文献

1
Medicine 2.0: social networking, collaboration, participation, apomediation, and openness.
J Med Internet Res. 2008 Aug 25;10(3):e22. doi: 10.2196/jmir.1030.
8
EyePACS: an open source clinical communication system for eye care.
Stud Health Technol Inform. 2004;107(Pt 1):207-11.
10
Retinopathy in diabetes.
Diabetes Care. 2004 Jan;27 Suppl 1:S84-7. doi: 10.2337/diacare.27.2007.s84.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验