Delavari Parsa, Ozturan Gulcenur, Navajas Eduardo V, Yilmaz Ozgur, Oruc Ipek
Ophthalmology and Visual Sciences, UBC, Vancouver, British Columbia, Canada.
Neuroscience, UBC, Vancouver, British Columbia, Canada.
PLoS One. 2025 Aug 7;20(8):e0327305. doi: 10.1371/journal.pone.0327305. eCollection 2025.
Diabetic retinopathy (DR) is a microvascular complication of diabetes that can lead to blindness if left untreated. Regular monitoring is crucial for detecting early signs of referable DR, and the progression to moderate to severe non-proliferative DR, proliferative DR (PDR), and macular edema (ME), the most common cause of vision loss in DR. Currently, aside from considerations during pregnancy, sex is not factored into DR diagnosis, management or treatment. Here we examine whether DR manifests differently in male and female patients, using a dataset of retinal images and leveraging convolutional neural networks (CNN) integrated with explainable artificial intelligence (AI) techniques. To minimize confounding variables, we curated 2,967 fundus images from a larger dataset of DR patients acquired from EyePACS, matching male and female groups for age, ethnicity, severity of DR, and hemoglobin A1C levels. Next, we fine-tuned two pre-trained VGG16 models-one trained on the ImageNet dataset and another on a sex classification task using healthy fundus images-achieving AUC scores of 0.72 and 0.75, respectively, both significantly above chance level. To uncover how these models distinguish between male and female retinas, we used the Guided Grad-CAM technique to generate saliency maps, highlighting critical retinal regions for correct classification. Saliency maps showed CNNs focused on different retinal regions by sex: the macula in females, and the optic disc and peripheral vasculature along the arcades in males. This pattern differed noticeably from the saliency maps generated by CNNs trained on healthy eyes. These findings raise the hypothesis that DR may manifest differently by sex, with women potentially at higher risk for developing ME, as opposed to men who may be at greater risk for PDR.
糖尿病性视网膜病变(DR)是糖尿病的一种微血管并发症,如果不进行治疗可能会导致失明。定期监测对于检测可转诊性DR的早期迹象以及进展为中度至重度非增殖性DR、增殖性DR(PDR)和黄斑水肿(ME)至关重要,ME是DR中视力丧失的最常见原因。目前,除了孕期的考虑因素外,性别在DR的诊断、管理或治疗中并未被纳入考量。在此,我们使用视网膜图像数据集,并利用与可解释人工智能(AI)技术相结合的卷积神经网络(CNN),研究DR在男性和女性患者中是否有不同表现。为了尽量减少混杂变量,我们从EyePACS获取的更大的DR患者数据集中精心挑选了2967张眼底图像,使男性和女性组在年龄、种族、DR严重程度和糖化血红蛋白水平方面相匹配。接下来,我们对两个预训练的VGG16模型进行了微调——一个在ImageNet数据集上训练,另一个在使用健康眼底图像的性别分类任务上训练——分别获得了0.72和0.75的AUC分数,两者均显著高于随机水平。为了揭示这些模型如何区分男性和女性视网膜,我们使用引导式梯度加权类激活映射(Guided Grad-CAM)技术生成显著性图,突出显示用于正确分类的关键视网膜区域。显著性图显示,CNN根据性别关注不同的视网膜区域:女性为黄斑,男性为视盘和沿血管弓的周边血管系统。这种模式与在健康眼睛上训练的CNN生成的显著性图明显不同。这些发现提出了一个假设,即DR可能因性别而异,女性患ME的风险可能更高,而男性患PDR的风险可能更大。