Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
Toxicol Appl Pharmacol. 2010 May 15;245(1):57-66. doi: 10.1016/j.taap.2010.01.016. Epub 2010 Feb 6.
Estragole has been shown to be hepatocarcinogenic in rodent species at high-dose levels. Translation of these results into the likelihood of formation of DNA adducts, mutation, and ultimately cancer upon more realistic low-dose exposures remains a challenge. Recently we have developed physiologically based biokinetic (PBBK) models for rat and human predicting bioactivation of estragole. These PBBK models, however, predict only kinetic characteristics. The present study describes the extension of the PBBK model to a so-called physiologically based biodynamic (PBBD) model predicting in vivo DNA adduct formation of estragole in rat liver. This PBBD model was developed using in vitro data on DNA adduct formation in rat primary hepatocytes exposed to 1'-hydroxyestragole. The model was extended by linking the area under the curve for 1'-hydroxyestragole formation predicted by the PBBK model to the area under the curve for 1'-hydroxyestragole in the in vitro experiments. The outcome of the PBBD model revealed a linear increase in DNA adduct formation with increasing estragole doses up to 100 mg/kg bw. Although DNA adduct formation of genotoxic carcinogens is generally seen as a biomarker of exposure rather than a biomarker of response, the PBBD model now developed is one step closer to the ultimate toxic effect of estragole than the PBBK model described previously. Comparison of the PBBD model outcome to available data showed that the model adequately predicts the dose-dependent level of DNA adduct formation. The PBBD model predicts DNA adduct formation at low levels of exposure up to a dose level showing to cause cancer in rodent bioassays, providing a proof of principle for modeling a toxicodynamic in vivo endpoint on the basis of solely in vitro experimental data.
葎草烯已被证明在高剂量水平的啮齿动物物种中具有肝致癌性。将这些结果转化为在更现实的低剂量暴露下形成 DNA 加合物、突变,最终致癌的可能性仍然是一个挑战。最近,我们开发了用于大鼠和人类的基于生理学的生物动力学 (PBBK) 模型,用于预测葎草烯的生物活化。然而,这些 PBBK 模型仅预测动力学特征。本研究描述了将 PBBK 模型扩展到所谓的基于生理学的生物动力学 (PBBD) 模型,以预测大鼠肝脏中葎草烯的体内 DNA 加合物形成。该 PBBD 模型是使用大鼠原代肝细胞中暴露于 1'-羟基葎草烯的 DNA 加合物形成的体外数据开发的。通过将 PBBK 模型预测的 1'-羟基葎草烯形成的曲线下面积与体外实验中 1'-羟基葎草烯的曲线下面积相联系,对模型进行了扩展。PBBD 模型的结果显示,DNA 加合物的形成随葎草烯剂量的增加而呈线性增加,直至达到 100mg/kg bw。尽管遗传毒性致癌剂的 DNA 加合物形成通常被视为暴露的生物标志物,而不是反应的生物标志物,但与之前描述的 PBBK 模型相比,现在开发的 PBBD 模型更接近葎草烯的最终毒性效应。将 PBBD 模型的结果与现有数据进行比较表明,该模型能够充分预测 DNA 加合物形成的剂量依赖性水平。PBBD 模型预测了低暴露水平下的 DNA 加合物形成,直至达到在啮齿动物生物测定中引起癌症的剂量水平,为仅基于体外实验数据对体内毒代动力学终点进行建模提供了原理证明。