Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA.
Phys Chem Chem Phys. 2009 Dec 7;11(45):10729-37. doi: 10.1039/b918629h. Epub 2009 Oct 20.
The compaction of chromatin, accessed through coarse-grained modeling and simulation, reveals different folding patterns as a function of the nucleosome repeat length (NRL), the presence of the linker histone, and the ionic strength. Our results indicate that the linker histone has negligible influence on short NRL fibers, whereas for longer NRL fibers it works like, and in tandem with, concentrated positive counterions to condense the chromatin fiber. Longer NRL fibers also exhibit structural heterogeneity, with solenoid-like conformations viable in addition to irregular zigzags. These features of chromatin and associated internucleosomal patterns presented here help interpret structural dependencies of the chromatin fiber on internal and external factors. In particular, we suggest that longer-NRL are more advantageous for packing and achieving various levels of fiber compaction throughout the cell cycle.
染色质的压缩可以通过粗粒化建模和模拟来实现,其揭示了不同的折叠模式,这些模式是核小体重复长度(NRL)、连接组蛋白的存在以及离子强度的函数。我们的结果表明,连接组蛋白对短 NRL 纤维几乎没有影响,而对于较长的 NRL 纤维,它的作用类似于并与浓缩的正离子一起,使染色质纤维浓缩。较长的 NRL 纤维也表现出结构异质性,除了不规则的锯齿形之外,还存在类似螺线管的构象。这里呈现的染色质及其相关核小体模式的这些特征有助于解释染色质纤维对内部和外部因素的结构依赖性。特别是,我们认为较长的 NRL 更有利于包装,并在整个细胞周期中实现各种水平的纤维浓缩。