Luque Antoni, Ozer Gungor, Schlick Tamar
Department of Mathematics and Statistics, Viral Information Institute and Computational Science Research Center, San Diego State University, San Diego, California.
Department of Chemistry, New York University, New York, New York.
Biophys J. 2016 Jun 7;110(11):2309-2319. doi: 10.1016/j.bpj.2016.04.024.
Eukaryotic cells condense their genetic material in the nucleus in the form of chromatin, a macromolecular complex made of DNA and multiple proteins. The structure of chromatin is intimately connected to the regulation of all eukaryotic organisms, from amoebas to humans, but its organization remains largely unknown. The nucleosome repeat length (NRL) and the concentration of linker histones (ρLH) are two structural parameters that vary among cell types and cell cycles; the NRL is the number of DNA basepairs wound around each nucleosome core plus the number of basepairs linking successive nucleosomes. Recent studies have found a linear empirical relationship between the variation of these two properties for different cells, but its underlying mechanism remains elusive. Here we apply our established mesoscale chromatin model to explore the mechanisms responsible for this relationship, by investigating chromatin fibers as a function of NRL and ρLH combinations. We find that a threshold of linker histone concentration triggers the compaction of chromatin into well-formed 30-nm fibers; this critical value increases linearly with NRL, except for long NRLs, where the fibers remain disorganized. Remarkably, the interaction patterns between core histone tails and chromatin elements are highly sensitive to the NRL and ρLH combination, suggesting a molecular mechanism that could have a key role in regulating the structural state of the fibers in the cell. An estimate of the minimized work and volume associated with storage of chromatin fibers in the nucleus further suggests factors that could spontaneously regulate the NRL as a function of linker histone concentration. Both the tail interaction map and DNA packing considerations support the empirical NRL/ρLH relationship and offer a framework to interpret experiments for different chromatin conditions in the cell.
真核细胞在细胞核中以染色质的形式浓缩其遗传物质,染色质是一种由DNA和多种蛋白质组成的大分子复合物。染色质的结构与从变形虫到人类的所有真核生物的调控密切相关,但其组织方式在很大程度上仍然未知。核小体重复长度(NRL)和连接组蛋白浓度(ρLH)是两个在细胞类型和细胞周期中有所不同的结构参数;NRL是缠绕在每个核小体核心周围的DNA碱基对数量加上连接连续核小体的碱基对数量。最近的研究发现,不同细胞的这两种特性变化之间存在线性经验关系,但其潜在机制仍然难以捉摸。在这里,我们应用已建立的中尺度染色质模型,通过研究作为NRL和ρLH组合函数的染色质纤维,来探索导致这种关系的机制。我们发现连接组蛋白浓度的一个阈值会触发染色质压缩成结构良好的30纳米纤维;这个临界值随NRL线性增加,但长NRL情况除外,此时纤维仍保持无序状态。值得注意的是,核心组蛋白尾部与染色质元件之间的相互作用模式对NRL和ρLH组合高度敏感,这表明一种分子机制可能在调节细胞中纤维的结构状态方面起关键作用。对与细胞核中染色质纤维储存相关的最小化功和体积的估计进一步表明,可能存在一些因素根据连接组蛋白浓度自发调节NRL。尾部相互作用图谱和DNA包装考虑因素都支持经验性的NRL/ρLH关系,并为解释细胞中不同染色质条件下的实验提供了一个框架。