Weinbruch S, Benker N, Koch W, Ebert M, Drabløs P A, Skaugset N P, Ellingsen D G, Thomassen Y
Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstrasse 9, D-64287 Darmstadt, Germany.
J Environ Monit. 2010 Feb;12(2):448-54. doi: 10.1039/b919142a. Epub 2009 Nov 18.
The hygroscopic behaviour of individual aerosol particles from workplaces in a primary aluminium smelter was investigated by environmental scanning electron microscopy. At a high relative humidity, comparable with the human respiratory tract, most particles encountered in the Søderberg and Prebake potrooms either undergo partial deliquescence (leading to a water droplet with an insoluble core) or form thin water films at the surface. As gaseous HF and SO(2) are highly soluble in water, the aerosol particles may act as carrier for these two gases into the alveolar region of the lower respiratory tract. Based on a one-dimensional mass balance model, it is estimated that under peak exposure conditions (particle surface area concentration of 10(-4) cm(2) cm(-3)) approximately 10% of the initial gaseous HF may be transferred to the particle phase. For SO(2), this fraction is much lower (approximately 1%). These results indicate that at least HF may penetrate deeper into the lung in the presence of soluble particles or particles that form surface water films compared to HF alone.
通过环境扫描电子显微镜研究了原铝冶炼厂工作场所单个气溶胶颗粒的吸湿行为。在与人类呼吸道相当的高相对湿度下,在 Söderberg 和预焙烧电解车间遇到的大多数颗粒要么发生部分潮解(导致形成具有不溶性核心的水滴),要么在表面形成薄水膜。由于气态 HF 和 SO₂ 高度溶于水,气溶胶颗粒可能将这两种气体输送到下呼吸道的肺泡区域。基于一维质量平衡模型,估计在峰值暴露条件下(颗粒表面积浓度为 10⁻⁴ cm² cm⁻³),初始气态 HF 中约 10% 可能转移到颗粒相中。对于 SO₂,这一比例要低得多(约 1%)。这些结果表明,与单独的 HF 相比,在存在可溶性颗粒或形成表面水膜的颗粒的情况下,至少 HF 可能会更深入地渗透到肺部。