Suppr超能文献

基于酶超家族的蛋白质组学活性研究:以丝氨酸水解酶为例。

Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.

机构信息

Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA.

出版信息

J Biol Chem. 2010 Apr 9;285(15):11051-5. doi: 10.1074/jbc.R109.097600. Epub 2010 Feb 10.

Abstract

Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members.

摘要

基因组测序项目已经在真核生物和原核生物中发现了数千种未被描述的酶。要想揭示酶的生理功能,就需要在天然生物系统中对其进行活性分析和干扰的工具。基于活性的蛋白质谱分析(activity-based protein profiling,ABPP)已经成为一种强大的化学生物组学策略,可以通过使用靶向具有共同活性位点特征的大量酶的化学探针来实现这些目标。在这里,我们综述了基于活性的蛋白质谱分析及其在注释酶蛋白质组中的应用,特别关注靶向丝氨酸水解酶的探针,丝氨酸水解酶是一个具有丰富未被描述成员的多样化超家族酶。

相似文献

1
Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.
J Biol Chem. 2010 Apr 9;285(15):11051-5. doi: 10.1074/jbc.R109.097600. Epub 2010 Feb 10.
2
Activity-based protein profiling: from enzyme chemistry to proteomic chemistry.
Annu Rev Biochem. 2008;77:383-414. doi: 10.1146/annurev.biochem.75.101304.124125.
3
Discovery and Evaluation of New Activity-Based Probes for Serine Hydrolases.
Chembiochem. 2019 Sep 2;20(17):2212-2216. doi: 10.1002/cbic.201900126. Epub 2019 Jul 29.
4
Activity-based protein profiling for the functional annotation of enzymes.
Nat Methods. 2007 Oct;4(10):822-7. doi: 10.1038/nmeth1092.
5
Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases.
Cell Chem Biol. 2020 Aug 20;27(8):937-952. doi: 10.1016/j.chembiol.2020.07.008. Epub 2020 Jul 28.
6
Application of activity-based protein profiling to study enzyme function in adipocytes.
Methods Enzymol. 2014;538:151-69. doi: 10.1016/B978-0-12-800280-3.00009-8.
7
A Superfamily-wide Activity Atlas of Serine Hydrolases in .
Biochemistry. 2021 Apr 27;60(16):1312-1324. doi: 10.1021/acs.biochem.1c00171. Epub 2021 Apr 7.
8
Competitive ABPP of Serine Hydrolases: A Case Study on DAGL-Alpha.
Methods Mol Biol. 2017;1491:161-169. doi: 10.1007/978-1-4939-6439-0_12.
9
Enzyme inhibitor discovery by activity-based protein profiling.
Annu Rev Biochem. 2014;83:341-77. doi: 10.1146/annurev-biochem-060713-035708.
10
Late-Stage Conversion of Diphenylphosphonate to Fluorophosphonate Probes for the Investigation of Serine Hydrolases.
Cell Chem Biol. 2019 Jun 20;26(6):878-884.e8. doi: 10.1016/j.chembiol.2019.02.020. Epub 2019 Apr 11.

引用本文的文献

1
Chemoproteomics identifies protein ligands for monoacylglycerol lipids.
Commun Chem. 2025 Jul 4;8(1):197. doi: 10.1038/s42004-025-01589-w.
2
Microplate-Based Enzymatic Activity Assay Protocol Powered by Activity-Based Probes.
Methods Mol Biol. 2025;2921:119-137. doi: 10.1007/978-1-0716-4502-4_6.
4
Linking the Metabolic Activity of Plastic-Degrading Fungi to Their Taxonomy and Evolution.
J Fungi (Basel). 2025 May 15;11(5):378. doi: 10.3390/jof11050378.
6
Profiling Serine Hydrolases in the Leishmania Host-Pathogen Interactome Using Cell-Permeable Activity-Based Fluorophosphonate Probes.
Chembiochem. 2025 May 27;26(10):e202500160. doi: 10.1002/cbic.202500160. Epub 2025 May 14.
7
A general approach for activity-based protein profiling of oxidoreductases with redox-differentiated diarylhalonium warheads.
Chem Sci. 2025 Mar 11;16(15):6240-6256. doi: 10.1039/d4sc08454c. eCollection 2025 Apr 9.
8
Prodrug activation in malaria parasites mediated by an imported erythrocyte esterase, acylpeptide hydrolase (APEH).
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2417682122. doi: 10.1073/pnas.2417682122. Epub 2025 Mar 4.
9
Proteomic Ligandability Maps of Phosphorus(V) Stereoprobes Identify Covalent TLCD1 Inhibitors.
bioRxiv. 2025 Jan 31:2025.01.31.635883. doi: 10.1101/2025.01.31.635883.
10
Covalent functionalization of G protein-coupled receptors by small molecular probes.
RSC Chem Biol. 2025 Feb 14;6(4):528-538. doi: 10.1039/d4cb00294f. eCollection 2025 Apr 2.

本文引用的文献

1
Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis.
Cell. 2010 Jan 8;140(1):49-61. doi: 10.1016/j.cell.2009.11.027.
2
From information to knowledge: new technologies for defining gene function.
Nat Methods. 2009 Oct;6(10):721-23. doi: 10.1038/nmeth1009-721.
3
Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo.
Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20270-5. doi: 10.1073/pnas.0909411106. Epub 2009 Nov 16.
4
MEROPS: the peptidase database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D227-33. doi: 10.1093/nar/gkp971. Epub 2009 Nov 5.
10
Differential activity-based gel electrophoresis for comparative analysis of lipolytic and esterolytic activities.
J Lipid Res. 2009 Jul;50(7):1281-92. doi: 10.1194/jlr.M800566-JLR200. Epub 2009 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验