Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, College of Medicine, MDC 8, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, USA.
J Appl Physiol (1985). 2010 Jun;108(6):1786-95. doi: 10.1152/japplphysiol.01337.2009. Epub 2010 Feb 11.
Cellular mechanisms of CO2 chemoreception are discussed and debated in terms of the stimuli produced during hypercapnic acidosis and their molecular targets: protons generated by the hydration of CO2 and dissociation of carbonic acid, which target membrane-bound proteins and lipids in brain stem neurons. The CO2 hydration reaction, however, is not the only reaction that CO2 undergoes that generates molecules capable of modifying proteins and lipids. Molecular CO2 also reacts with peroxynitrite (ONOO-), a reactive nitrogen species (RNS), which is produced from nitric oxide (*NO) and superoxide (*O2-). The CO2/ONOO- reaction, in turn, produces additional nitrosative and oxidative reactive intermediates. Furthermore, protons facilitate additional redox reactions that generate other reactive oxygen species (ROS). ROS/RNS generated by these redox reactions may act as additional stimuli of CO2 chemoreceptors since neurons in chemosensitive areas produce both *NO and *O2- and, therefore, ONOO-. Perturbing *NO, *O2-, and ONOO- activities in chemosensitive areas modulates cardiorespiration. Moreover, neurons in at least one chemosensitive area, the solitary complex, are stimulated by cellular oxidation. Together, these data raise the following two questions: 1) do pH and ROS/RNS work in tandem to stimulate CO2 chemoreceptors during hypercapnic acidosis; and 2) does nitrosative stress and oxidative stress contribute to CO2 chemoreceptor dysfunction? To begin considering these two issues and their implications for central chemoreception, this minireview has the following three goals: 1) summarize the nitrosative and oxidative reactions that occur during hypercapnic acidosis and isocapnic acidosis; 2) review the evidence that redox signaling occurs in chemosensitive areas; and 3) review the evidence that neurons in the solitary complex are stimulated by cellular oxidation.
细胞对二氧化碳化学感受器的作用机制,是基于在高碳酸血症期间产生的刺激及其分子靶点来讨论和争论的:二氧化碳水合反应生成的质子和碳酸的离解产生的质子,作用于脑干神经元的膜结合蛋白和脂质。然而,二氧化碳水合反应并不是二氧化碳发生的唯一反应,该反应生成能够修饰蛋白质和脂质的分子。分子态二氧化碳还与过氧亚硝酸盐(ONOO-)反应,过氧亚硝酸盐是一种活性氮物种(RNS),由一氧化氮(NO)和超氧阴离子自由基(O2-)生成。反过来,二氧化碳/过氧亚硝酸盐反应会产生额外的硝化和氧化活性中间产物。此外,质子促进其他氧化还原反应,产生其他活性氧物质(ROS)。这些氧化还原反应产生的 ROS/RNS 可能作为二氧化碳化学感受器的额外刺激,因为在化学敏感区域的神经元会同时产生NO 和O2-,因此也会产生 ONOO-。干扰化学敏感区域的*NO、*O2-和 ONOO-的活性会调节心肺功能。此外,至少一个化学敏感区域(孤束核)的神经元会受到细胞氧化的刺激。综上所述,这些数据提出了以下两个问题:1)在高碳酸血症期间,pH 值和 ROS/RNS 是否协同作用以刺激二氧化碳化学感受器;2)硝化应激和氧化应激是否会导致二氧化碳化学感受器功能障碍?为了开始考虑这两个问题及其对中枢化学感受器的影响,本综述有以下三个目标:1)总结在高碳酸血症和等碳酸血症期间发生的硝化和氧化反应;2)综述氧化还原信号在化学敏感区域发生的证据;3)综述孤束核神经元受到细胞氧化刺激的证据。