Suppr超能文献

基于配体的虚拟筛选的最优分配方法。

Optimal assignment methods for ligand-based virtual screening.

机构信息

University of Tübingen, Center for Bioinformatics Tübingen (ZBIT), Sand 1, 72076 Tübingen, Germany.

出版信息

J Cheminform. 2009 Aug 25;1:14. doi: 10.1186/1758-2946-1-14.

Abstract

BACKGROUND

Ligand-based virtual screening experiments are an important task in the early drug discovery stage. An ambitious aim in each experiment is to disclose active structures based on new scaffolds. To perform these "scaffold-hoppings" for individual problems and targets, a plethora of different similarity methods based on diverse techniques were published in the last years. The optimal assignment approach on molecular graphs, a successful method in the field of quantitative structure-activity relationships, has not been tested as a ligand-based virtual screening method so far.

RESULTS

We evaluated two already published and two new optimal assignment methods on various data sets. To emphasize the "scaffold-hopping" ability, we used the information of chemotype clustering analyses in our evaluation metrics. Comparisons with literature results show an improved early recognition performance and comparable results over the complete data set. A new method based on two different assignment steps shows an increased "scaffold-hopping" behavior together with a good early recognition performance.

CONCLUSION

The presented methods show a good combination of chemotype discovery and enrichment of active structures. Additionally, the optimal assignment on molecular graphs has the advantage to investigate and interpret the mappings, allowing precise modifications of internal parameters of the similarity measure for specific targets. All methods have low computation times which make them applicable to screen large data sets.

摘要

背景

配体为基础的虚拟筛选实验是药物发现早期的一项重要任务。每个实验的一个雄心勃勃的目标是基于新骨架揭示活性结构。为了针对个别问题和目标执行这些“支架跃迁”,近年来已经发表了大量基于不同技术的不同相似性方法。到目前为止,在分子图形上的最优分配方法(定量构效关系领域的一种成功方法)尚未作为配体为基础的虚拟筛选方法进行测试。

结果

我们在各种数据集上评估了两种已发表的和两种新的最优分配方法。为了强调“支架跃迁”能力,我们在评估指标中使用了化学型聚类分析的信息。与文献结果的比较表明,早期识别性能有所提高,并且在整个数据集上的结果相当。一种基于两种不同分配步骤的新方法显示出更好的“支架跃迁”行为和良好的早期识别性能。

结论

所提出的方法显示出化学型发现和活性结构富集的良好结合。此外,分子图形上的最优分配具有调查和解释映射的优势,允许针对特定目标精确修改相似性度量的内部参数。所有方法的计算时间都很短,适用于筛选大型数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec05/2820492/6a88893fc401/1758-2946-1-14-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验