Suppr超能文献

用于解决细胞色素 P450 3A4 时间依赖性抑制的计算-体外综合策略。

Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition.

机构信息

Dynamics & Drug Metabolism, Pharmacokinetics, Pfizer Global Research & Development, San Diego California, Groton, Connecticut, USA.

出版信息

Chem Res Toxicol. 2010 Mar 15;23(3):664-76. doi: 10.1021/tx900417f.

Abstract

Throughout the past decade, the expectations from the regulatory agencies for safety, drug-drug interactions (DDIs), pharmacokinetic, and disposition characterization of new chemical entities (NCEs) by pharmaceutical companies seeking registration have increased. DDIs are frequently assessed using in silico, in vitro, and in vivo methodologies. However, a key gap in this screening paradigm is a full structural understanding of time-dependent inhibition (TDI) on the cytochrome P450 systems, particularly P450 3A4. To address this, a number of high-throughput in vitro assays have been developed. This work describes an automated assay for TDI using two concentrations at two time points (2 + 2 assay). Data generated with this assay for over 2000 compounds from multiple therapeutic programs were used to generate in silico Bayesian classification models of P450 3A4-mediated TDI. These in silico models were validated using several external test sets and multiple random group testing (receiver operator curve value >0.847). We identified a number of substructures that were likely to elicit TDI, the majority containing indazole rings. These in vitro and in silico approaches have been implemented as a part of the Pfizer screening paradigm. The Bayesian models are available on the intranet to guide synthetic strategy, predict whether a NCE is likely to cause a TDI via P450 3A4, filter for in vitro testing, and identify substructures important for TDI as well as those that do not cause TDI. This represents an integrated in silico-in vitro strategy for addressing P450 3A4 TDI and improving the efficiency of screening.

摘要

在过去的十年中,监管机构对寻求注册的制药公司提出了更高的要求,要求其对新化学实体(NCE)的安全性、药物相互作用(DDI)、药代动力学和处置特性进行评估。DDI 通常使用计算、体外和体内方法进行评估。然而,这种筛选模式的一个关键缺陷是对细胞色素 P450 系统(尤其是 P450 3A4)的时间依赖性抑制(TDI)缺乏全面的结构理解。为了解决这个问题,已经开发了许多高通量的体外检测方法。这项工作描述了一种使用两个浓度在两个时间点(2 + 2 检测法)进行 TDI 的自动化检测方法。使用来自多个治疗项目的超过 2000 种化合物生成的数据,用于生成 P450 3A4 介导的 TDI 的计算贝叶斯分类模型。这些计算模型使用多个外部测试集和多个随机分组测试(接收者操作特征曲线值>0.847)进行了验证。我们确定了一些可能引起 TDI 的亚结构,其中大多数包含吲唑环。这些体外和计算方法已被纳入辉瑞筛选模式的一部分。贝叶斯模型可在内部网上获得,用于指导合成策略,预测 NCE 是否可能通过 P450 3A4 引起 TDI,进行体外测试筛选,并确定对 TDI 重要的亚结构以及不会引起 TDI 的亚结构。这代表了一种用于解决 P450 3A4 TDI 并提高筛选效率的计算-体外综合策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验