Suppr超能文献

UMLS 内容视图适合于生物医学文献与临床文本的自然语言处理。

UMLS content views appropriate for NLP processing of the biomedical literature vs. clinical text.

机构信息

Lister Hill National Center for Biomedical Communications (LHNCBC), U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

出版信息

J Biomed Inform. 2010 Aug;43(4):587-94. doi: 10.1016/j.jbi.2010.02.005. Epub 2010 Feb 10.

Abstract

Identification of medical terms in free text is a first step in such Natural Language Processing (NLP) tasks as automatic indexing of biomedical literature and extraction of patients' problem lists from the text of clinical notes. Many tools developed to perform these tasks use biomedical knowledge encoded in the Unified Medical Language System (UMLS) Metathesaurus. We continue our exploration of automatic approaches to creation of subsets (UMLS content views) which can support NLP processing of either the biomedical literature or clinical text. We found that suppression of highly ambiguous terms in the conservative AutoFilter content view can partially replace manual filtering for literature applications, and suppression of two character mappings in the same content view achieves 89.5% precision at 78.6% recall for clinical applications.

摘要

在自然语言处理(NLP)任务中,例如自动索引生物医学文献和从临床记录的文本中提取患者的问题列表,识别自由文本中的医学术语是第一步。许多用于执行这些任务的工具都使用统一医学语言系统(UMLS)Metathesaurus 中编码的生物医学知识。我们继续探索自动方法来创建子集(UMLS 内容视图),这些子集可以支持 NLP 处理生物医学文献或临床文本。我们发现,在保守的 AutoFilter 内容视图中抑制高度模糊的术语可以部分替代文献应用程序的手动过滤,并且在同一内容视图中抑制两个字符映射可以实现临床应用程序 78.6%召回率时达到 89.5%的精度。

相似文献

引用本文的文献

6
Broad-coverage biomedical relation extraction with SemRep.基于 SemRep 的广谱生物医学关系抽取。
BMC Bioinformatics. 2020 May 14;21(1):188. doi: 10.1186/s12859-020-3517-7.
8
Domain adaptation for semantic role labeling of clinical text.临床文本语义角色标注的领域适应
J Am Med Inform Assoc. 2015 Sep;22(5):967-79. doi: 10.1093/jamia/ocu048. Epub 2015 Jun 10.
9
Concept selection for phenotypes and diseases using learn to rank.使用排序学习法进行表型和疾病的概念选择。
J Biomed Semantics. 2015 Jun 1;6:24. doi: 10.1186/s13326-015-0019-z. eCollection 2015.

本文引用的文献

4
Disambiguation of biomedical text using diverse sources of information.利用多种信息来源对生物医学文本进行消歧。
BMC Bioinformatics. 2008 Nov 19;9 Suppl 11(Suppl 11):S7. doi: 10.1186/1471-2105-9-S11-S7.
6
Automated de-identification of free-text medical records.自由文本医疗记录的自动去识别化
BMC Med Inform Decis Mak. 2008 Jul 24;8:32. doi: 10.1186/1472-6947-8-32.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验