文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

UMLS 内容视图适合于生物医学文献与临床文本的自然语言处理。

UMLS content views appropriate for NLP processing of the biomedical literature vs. clinical text.

机构信息

Lister Hill National Center for Biomedical Communications (LHNCBC), U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

出版信息

J Biomed Inform. 2010 Aug;43(4):587-94. doi: 10.1016/j.jbi.2010.02.005. Epub 2010 Feb 10.


DOI:10.1016/j.jbi.2010.02.005
PMID:20152935
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2890296/
Abstract

Identification of medical terms in free text is a first step in such Natural Language Processing (NLP) tasks as automatic indexing of biomedical literature and extraction of patients' problem lists from the text of clinical notes. Many tools developed to perform these tasks use biomedical knowledge encoded in the Unified Medical Language System (UMLS) Metathesaurus. We continue our exploration of automatic approaches to creation of subsets (UMLS content views) which can support NLP processing of either the biomedical literature or clinical text. We found that suppression of highly ambiguous terms in the conservative AutoFilter content view can partially replace manual filtering for literature applications, and suppression of two character mappings in the same content view achieves 89.5% precision at 78.6% recall for clinical applications.

摘要

在自然语言处理(NLP)任务中,例如自动索引生物医学文献和从临床记录的文本中提取患者的问题列表,识别自由文本中的医学术语是第一步。许多用于执行这些任务的工具都使用统一医学语言系统(UMLS)Metathesaurus 中编码的生物医学知识。我们继续探索自动方法来创建子集(UMLS 内容视图),这些子集可以支持 NLP 处理生物医学文献或临床文本。我们发现,在保守的 AutoFilter 内容视图中抑制高度模糊的术语可以部分替代文献应用程序的手动过滤,并且在同一内容视图中抑制两个字符映射可以实现临床应用程序 78.6%召回率时达到 89.5%的精度。

相似文献

[1]
UMLS content views appropriate for NLP processing of the biomedical literature vs. clinical text.

J Biomed Inform. 2010-2-10

[2]
Methodology for creating UMLS content views appropriate for biomedical natural language processing.

AMIA Annu Symp Proc. 2008-11-6

[3]
A Comprehensive Analysis of Five Million UMLS Metathesaurus Terms Using Eighteen Million MEDLINE Citations.

AMIA Annu Symp Proc. 2010-11-13

[4]
Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program.

Proc AMIA Symp. 2001

[5]
UMLS knowledge for biomedical language processing.

Bull Med Libr Assoc. 1993-4

[6]
Use of "off-the-shelf" information extraction algorithms in clinical informatics: A feasibility study of MetaMap annotation of Italian medical notes.

J Biomed Inform. 2016-10

[7]
The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text.

J Biomed Inform. 2003-12

[8]
UMLS-Query: a perl module for querying the UMLS.

AMIA Annu Symp Proc. 2008-11-6

[9]
UMLS-based data augmentation for natural language processing of clinical research literature.

J Am Med Inform Assoc. 2021-3-18

[10]
Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text.

J Med Internet Res. 2015-8-31

引用本文的文献

[1]
Identifying Medical Concepts and Semantic Types in Lay Vocabularies of Health Consumers Who are Concerned with Diabetes on Social Media Using the UMLS and NLP.

Proc COMPSAC. 2024-7

[2]
The suitability of UMLS and SNOMED-CT for encoding outcome concepts.

J Am Med Inform Assoc. 2023-11-17

[3]
A case study in applying artificial intelligence-based named entity recognition to develop an automated ophthalmic disease registry.

Graefes Arch Clin Exp Ophthalmol. 2023-11

[4]
When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification.

BMC Med Inform Decis Mak. 2022-4-5

[5]
User testing of a diagnostic decision support system with machine-assisted chart review to facilitate clinical genomic diagnosis.

BMJ Health Care Inform. 2021-5

[6]
Broad-coverage biomedical relation extraction with SemRep.

BMC Bioinformatics. 2020-5-14

[7]
Enhanced Quality Measurement Event Detection: An Application to Physician Reporting.

EGEMS (Wash DC). 2017-5-30

[8]
Domain adaptation for semantic role labeling of clinical text.

J Am Med Inform Assoc. 2015-9

[9]
Concept selection for phenotypes and diseases using learn to rank.

J Biomed Semantics. 2015-6-1

[10]
TextHunter--A User Friendly Tool for Extracting Generic Concepts from Free Text in Clinical Research.

AMIA Annu Symp Proc. 2014-11-14

本文引用的文献

[1]
Word Sense Disambiguation by Selecting the Best Semantic Type Based on Journal Descriptor Indexing: Preliminary Experiment.

J Am Soc Inf Sci Technol. 2006-1-1

[2]
The potential for automated question answering in the context of genomic medicine: an assessment of existing resources and properties of answers.

BMC Bioinformatics. 2009-9-17

[3]
Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy.

BMC Bioinformatics. 2009-1-21

[4]
Disambiguation of biomedical text using diverse sources of information.

BMC Bioinformatics. 2008-11-19

[5]
Methodology for creating UMLS content views appropriate for biomedical natural language processing.

AMIA Annu Symp Proc. 2008-11-6

[6]
Automated de-identification of free-text medical records.

BMC Med Inform Decis Mak. 2008-7-24

[7]
Towards a semantic lexicon for biological language processing.

Comp Funct Genomics. 2005

[8]
Word sense disambiguation across two domains: biomedical literature and clinical notes.

J Biomed Inform. 2008-12

[9]
Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues.

BMC Bioinformatics. 2006-7-5

[10]
Word sense disambiguation in the biomedical domain: an overview.

J Comput Biol. 2005-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索