Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany.
Appl Environ Microbiol. 2010 Apr;76(8):2641-51. doi: 10.1128/AEM.02700-09. Epub 2010 Feb 12.
The development of cellular systems in which the enzyme hydrogenase is efficiently coupled to the oxygenic photosynthesis apparatus represents an attractive avenue to produce H(2) sustainably from light and water. Here we describe the molecular design of the individual components required for the direct coupling of the O(2)-tolerant membrane-bound hydrogenase (MBH) from Ralstonia eutropha H16 to the acceptor site of photosystem I (PS I) from Synechocystis sp. PCC 6803. By genetic engineering, the peripheral subunit PsaE of PS I was fused to the MBH, and the resulting hybrid protein was purified from R. eutropha to apparent homogeneity via two independent affinity chromatographical steps. The catalytically active MBH-PsaE (MBH(PsaE)) hybrid protein could be isolated only from the cytoplasmic fraction. This was surprising, since the MBH is a substrate of the twin-arginine translocation system and was expected to reside in the periplasm. We conclude that the attachment of the additional PsaE domain to the small, electron-transferring subunit of the MBH completely abolished the export competence of the protein. Activity measurements revealed that the H(2) production capacity of the purified MBH(PsaE) fusion protein was very similar to that of wild-type MBH. In order to analyze the specific interaction of MBH(PsaE) with PS I, His-tagged PS I lacking the PsaE subunit was purified via Ni-nitrilotriacetic acid affinity and subsequent hydrophobic interaction chromatography. Formation of PS I-hydrogenase supercomplexes was demonstrated by blue native gel electrophoresis. The results indicate a vital prerequisite for the quantitative analysis of the MBH(PsaE)-PS I complex formation and its light-driven H(2) production capacity by means of spectroelectrochemistry.
细胞系统的发展,其中酶氢化酶有效地与氧气光合作用装置耦合,代表了从光和水中可持续生产 H(2)的有吸引力的途径。在这里,我们描述了直接耦合来自 Ralstonia eutropha H16 的 O(2)-耐受膜结合氢化酶 (MBH) 到来自 Synechocystis sp. PCC 6803 的光系统 I (PSI) 的受体位点所需的单个组件的分子设计。通过基因工程,PSI 的外周亚基 PsaE 与 MBH 融合,并且所得的杂交蛋白通过两个独立的亲和层析步骤从 R. eutropha 中纯化为明显的均一性。只有从细胞质部分才能分离出催化活性的 MBH-PsaE (MBH(PsaE)) 杂合蛋白。这令人惊讶,因为 MBH 是双精氨酸转运系统的底物,并且预计存在于周质中。我们得出结论,将额外的 PsaE 结构域附加到 MBH 的小电子转移亚基上完全消除了该蛋白的出口能力。活性测量表明,纯化的 MBH(PsaE)融合蛋白的 H(2)产生能力与野生型 MBH 非常相似。为了分析 MBH(PsaE)与 PS I 的特定相互作用,通过 Ni-亚乙基二胺三乙酸亲和和随后的疏水性相互作用层析纯化了缺乏 PsaE 亚基的 His 标记 PS I。通过蓝色非变性凝胶电泳证明了 PS I-氢化酶超复合物的形成。结果表明,对于通过光谱电化学对 MBH(PsaE)-PSI 复合物形成及其光驱动 H(2)产生能力进行定量分析是一个重要的前提。