Suppr超能文献

通过光合系统 I 和 [NiFe]-氢化酶的混合复合物进行光合产氢。

Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase.

机构信息

Department of Chemistry, Bielefeld University, D-33615 Bielefeld, Germany.

出版信息

ACS Nano. 2009 Dec 22;3(12):4055-61. doi: 10.1021/nn900748j.

Abstract

Nature provides key components for generating fuels from renewable resources in the form of enzymatic nanomachines which catalyze crucial steps in biological energy conversion, for example, the photosynthetic apparatus, which transforms solar power into chemical energy, and hydrogenases, capable of generating molecular hydrogen. As sunlight is usually used to synthesize carbohydrates, direct generation of hydrogen from light represents an exception in nature. On the molecular level, the crucial step for conversion of solar energy into H(2) lies in the efficient electronic coupling of photosystem I and hydrogenase. Here we show the stepwise assembly of a hybrid complex consisting of photosystem I and hydrogenase on a solid gold surface. This device gave rise to light-induced H(2) evolution. Hydrogen production is possible at far higher potential and thus lower energy compared to those of previously described (bio)nanoelectronic devices that did not employ the photosynthesis apparatus. The successful demonstration of efficient solar-to-hydrogen conversion may serve as a blueprint for the establishment of this system in a living organism with the paramount advantage of self-replication.

摘要

自然界提供了从可再生资源中生成燃料的关键组成部分,这些组成部分以酶纳米机器的形式存在,这些纳米机器可以催化生物能量转换中的关键步骤,例如光合作用装置,它将太阳能转化为化学能,以及氢化酶,它能够产生分子氢。由于阳光通常用于合成碳水化合物,因此直接从光中生成氢气是自然界中的一个例外。在分子水平上,将太阳能转化为 H(2)的关键步骤在于光合系统 I 和氢化酶之间的有效电子偶联。在这里,我们展示了在固体金表面上由光合系统 I 和氢化酶组成的混合复合物的分步组装。该装置引发了光诱导的 H(2)演化。与以前描述的(生物)纳米电子设备相比,该设备可以在更高的电势下产生氢气,因此需要的能量更低,这些设备没有利用光合作用装置。高效太阳能到氢气的转化的成功演示可能为在具有自我复制这一主要优势的生物体中建立该系统提供蓝图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验