Suppr超能文献

PhenX:一个跨学科遗传学研究的工具包。

PhenX: a toolkit for interdisciplinary genetics research.

机构信息

Cornell University, Ithaca, New York, USA.

出版信息

Curr Opin Lipidol. 2010 Apr;21(2):136-40. doi: 10.1097/MOL.0b013e3283377395.

Abstract

PURPOSE OF REVIEW

To highlight standard PhenX (consensus measures for Phenotypes and eXposures) measures for nutrition, dietary supplements, and cardiovascular disease research and to demonstrate how these and other PhenX measures can be used to further interdisciplinary genetics research.

RECENT FINDINGS

PhenX addresses the need for standard measures in large-scale genomic research studies by providing investigators with high-priority, well established, low-burden measurement protocols in a web-based toolkit (https://www.phenxtoolkit.org). Cardiovascular and Nutrition and Dietary Supplements are just 2 of 21 research domains and accompanying measures included in the PhenX Toolkit.

SUMMARY

Genome-wide association studies (GWAS) provide promise for the identification of genomic markers associated with different disease phenotypes, but require replication to validate results. Cross-study comparisons typically increase statistical power and are required to understand the roles of comorbid conditions and environmental factors in the progression of disease. However, the lack of comparable phenotypic, environmental, and risk factor data forces investigators to infer and to compare metadata rather than directly combining data from different studies. PhenX measures provide a common currency for collecting data, thereby greatly facilitating cross-study analysis and increasing statistical power for identification of associations between genotypes, phenotypes, and exposures.

摘要

目的综述

强调营养、饮食补充剂和心血管疾病研究的标准 PhenX(表型和暴露的共识测量)措施,并展示如何将这些和其他 PhenX 措施用于进一步开展跨学科遗传学研究。

最近的发现

PhenX 通过在基于网络的工具包(https://www.phenxtoolkit.org)中为研究人员提供高优先级、成熟、低负担的测量方案,满足了大型基因组研究中对标准措施的需求。心血管疾病和营养与饮食补充剂只是 PhenX 工具包中包含的 21 个研究领域和相关措施中的 2 个。

总结

全基因组关联研究(GWAS)为识别与不同疾病表型相关的基因组标记提供了希望,但需要复制以验证结果。跨研究比较通常会增加统计功效,并需要了解共病和环境因素在疾病进展中的作用。然而,缺乏可比的表型、环境和风险因素数据迫使研究人员推断和比较元数据,而不是直接合并来自不同研究的数据。PhenX 措施提供了收集数据的通用货币,从而极大地促进了跨研究分析,并提高了识别基因型、表型和暴露之间关联的统计功效。

相似文献

1
PhenX: a toolkit for interdisciplinary genetics research.
Curr Opin Lipidol. 2010 Apr;21(2):136-40. doi: 10.1097/MOL.0b013e3283377395.
3
Using the PhenX Toolkit to Add Standard Measures to a Study.
Curr Protoc Hum Genet. 2015 Jul 1;86:1.21.1-1.21.17. doi: 10.1002/0471142905.hg0121s86.
4
Research standardization tools: pregnancy measures in the PhenX Toolkit.
Am J Obstet Gynecol. 2017 Sep;217(3):249-262. doi: 10.1016/j.ajog.2017.05.058. Epub 2017 May 31.
5
Using the PhenX Toolkit to Add Standard Measures to a Study.
Curr Protoc Hum Genet. 2011 Oct;Chapter 1:Unit1.21. doi: 10.1002/0471142905.hg0121s71.
6
The PhenX Toolkit: get the most from your measures.
Am J Epidemiol. 2011 Aug 1;174(3):253-60. doi: 10.1093/aje/kwr193. Epub 2011 Jul 11.
7
The PhenX Toolkit: Establishing Standard Measures for COVID-19 Research.
Curr Protoc. 2021 Apr;1(4):e111. doi: 10.1002/cpz1.111.
8
9
The PhenX Toolkit: Measurement Protocols for Assessment of Social Determinants of Health.
Am J Prev Med. 2023 Sep;65(3):534-542. doi: 10.1016/j.amepre.2023.03.003. Epub 2023 Mar 17.
10
Genomic medicine implementation protocols in the PhenX Toolkit: tools for standardized data collection.
Genet Med. 2021 Sep;23(9):1783-1788. doi: 10.1038/s41436-021-01183-0. Epub 2021 May 10.

引用本文的文献

4
Genetic and brain similarity independently predict childhood anthropometrics and neighborhood socioeconomic conditions.
Dev Cogn Neurosci. 2024 Feb;65:101339. doi: 10.1016/j.dcn.2023.101339. Epub 2024 Jan 4.
6
Developing Clinical Phenotype Data Collection Standards for Research in Africa.
Glob Health Epidemiol Genom. 2023 Sep 19;2023:6693323. doi: 10.1155/2023/6693323. eCollection 2023.
8
From Mendel to multi-omics: shifting paradigms.
Eur J Hum Genet. 2024 Feb;32(2):139-142. doi: 10.1038/s41431-023-01420-x. Epub 2023 Jul 20.
9
Treatment of US Children With Attention-Deficit/Hyperactivity Disorder in the Adolescent Brain Cognitive Development Study.
JAMA Netw Open. 2023 Apr 3;6(4):e2310999. doi: 10.1001/jamanetworkopen.2023.10999.

本文引用的文献

1
Genetic variants associated with Lp(a) lipoprotein level and coronary disease.
N Engl J Med. 2009 Dec 24;361(26):2518-28. doi: 10.1056/NEJMoa0902604.
2
Fatty acid interactions with genetic polymorphisms for cardiovascular disease.
Curr Opin Clin Nutr Metab Care. 2010 Mar;13(2):139-44. doi: 10.1097/MCO.0b013e3283357287.
3
Hypothalamic FTO is associated with the regulation of energy intake not feeding reward.
BMC Neurosci. 2009 Oct 27;10:129. doi: 10.1186/1471-2202-10-129.
5
Macronutrient-specific effect of FTO rs9939609 in response to a 10-week randomized hypo-energetic diet among obese Europeans.
Int J Obes (Lond). 2009 Nov;33(11):1227-34. doi: 10.1038/ijo.2009.159. Epub 2009 Aug 18.
6
Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations.
PLoS Genet. 2009 Jun;5(6):e1000504. doi: 10.1371/journal.pgen.1000504. Epub 2009 Jun 5.
7
Biomarkers in nutritional epidemiology: applications, needs and new horizons.
Hum Genet. 2009 Jun;125(5-6):507-25. doi: 10.1007/s00439-009-0662-5. Epub 2009 Apr 9.
8
Metabolic syndrome: from epidemiology to systems biology.
Nat Rev Genet. 2008 Nov;9(11):819-30. doi: 10.1038/nrg2468.
9
The challenges for molecular nutrition research 1: linking genotype to healthy nutrition.
Genes Nutr. 2008 Jul;3(2):41-9. doi: 10.1007/s12263-008-0086-1.
10
Genetic and epigenetic contributions to human nutrition and health: managing genome-diet interactions.
J Am Diet Assoc. 2008 Sep;108(9):1480-7. doi: 10.1016/j.jada.2008.06.430.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验