Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany.
Biophys J. 2010 Feb 17;98(4):552-9. doi: 10.1016/j.bpj.2009.11.002.
Protein mobility affects most cellular processes, such as the rates of enzymatic reactions, signal transduction, and assembly of macromolecular complexes. Despite such importance, little systematic information is available about protein diffusion inside bacterial cells. Here we combined fluorescence recovery after photobleaching with numerical modeling to analyze mobility of a set of fluorescent protein fusions in the bacterial cytoplasm, the plasma membrane, and in the nucleoid. Estimated diffusion coefficients of cytoplasmic and membrane proteins show steep dependence on the size and on the number of transmembrane helices, respectively. Protein diffusion in both compartments is thus apparently obstructed by a network of obstacles, creating the so-called molecular sieving effect. These obstructing networks themselves, however, appear to be dynamic and allow a slow and nearly size-independent movement of large proteins and complexes. The obtained dependencies of protein mobility on the molecular mass and the number of transmembrane helices can be used as a reference to predict diffusion rates of proteins in Escherichia coli. Mobility of DNA-binding proteins apparently mainly depends on their binding specificity, with FRAP recovery kinetics being slower for the highly specific TetR repressor than for the relatively nonspecific H-NS regulator.
蛋白质的流动性会影响大多数细胞过程,例如酶反应速率、信号转导和大分子复合物的组装。尽管如此重要,但关于细菌细胞内蛋白质扩散的系统信息却很少。在这里,我们将光漂白后荧光恢复与数值建模相结合,分析了一组荧光蛋白融合在细胞质、质膜和拟核中的流动性。细胞质和膜蛋白的估计扩散系数分别与大小和跨膜螺旋的数量呈陡峭的依赖性。因此,这两个隔室中的蛋白质扩散显然受到障碍物网络的阻碍,产生了所谓的分子筛效应。然而,这些障碍物网络本身似乎是动态的,允许大蛋白质和复合物进行缓慢且几乎与大小无关的运动。蛋白质流动性与分子质量和跨膜螺旋数量的关系可以作为预测大肠杆菌中蛋白质扩散速率的参考。DNA 结合蛋白的流动性显然主要取决于其结合特异性,与相对非特异性的 H-NS 调节剂相比,高特异性的 TetR 阻遏物的 FRAP 恢复动力学更慢。