Suppr超能文献

细胞质、膜和 DNA 结合蛋白在大肠杆菌中的流动性。

Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli.

机构信息

Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany.

出版信息

Biophys J. 2010 Feb 17;98(4):552-9. doi: 10.1016/j.bpj.2009.11.002.

Abstract

Protein mobility affects most cellular processes, such as the rates of enzymatic reactions, signal transduction, and assembly of macromolecular complexes. Despite such importance, little systematic information is available about protein diffusion inside bacterial cells. Here we combined fluorescence recovery after photobleaching with numerical modeling to analyze mobility of a set of fluorescent protein fusions in the bacterial cytoplasm, the plasma membrane, and in the nucleoid. Estimated diffusion coefficients of cytoplasmic and membrane proteins show steep dependence on the size and on the number of transmembrane helices, respectively. Protein diffusion in both compartments is thus apparently obstructed by a network of obstacles, creating the so-called molecular sieving effect. These obstructing networks themselves, however, appear to be dynamic and allow a slow and nearly size-independent movement of large proteins and complexes. The obtained dependencies of protein mobility on the molecular mass and the number of transmembrane helices can be used as a reference to predict diffusion rates of proteins in Escherichia coli. Mobility of DNA-binding proteins apparently mainly depends on their binding specificity, with FRAP recovery kinetics being slower for the highly specific TetR repressor than for the relatively nonspecific H-NS regulator.

摘要

蛋白质的流动性会影响大多数细胞过程,例如酶反应速率、信号转导和大分子复合物的组装。尽管如此重要,但关于细菌细胞内蛋白质扩散的系统信息却很少。在这里,我们将光漂白后荧光恢复与数值建模相结合,分析了一组荧光蛋白融合在细胞质、质膜和拟核中的流动性。细胞质和膜蛋白的估计扩散系数分别与大小和跨膜螺旋的数量呈陡峭的依赖性。因此,这两个隔室中的蛋白质扩散显然受到障碍物网络的阻碍,产生了所谓的分子筛效应。然而,这些障碍物网络本身似乎是动态的,允许大蛋白质和复合物进行缓慢且几乎与大小无关的运动。蛋白质流动性与分子质量和跨膜螺旋数量的关系可以作为预测大肠杆菌中蛋白质扩散速率的参考。DNA 结合蛋白的流动性显然主要取决于其结合特异性,与相对非特异性的 H-NS 调节剂相比,高特异性的 TetR 阻遏物的 FRAP 恢复动力学更慢。

相似文献

1
Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli.
Biophys J. 2010 Feb 17;98(4):552-9. doi: 10.1016/j.bpj.2009.11.002.
2
Size dependence of protein diffusion in the cytoplasm of Escherichia coli.
J Bacteriol. 2010 Sep;192(18):4535-40. doi: 10.1128/JB.00284-10. Epub 2010 Jun 25.
3
Protein exchange dynamics at chemoreceptor clusters in Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6403-8. doi: 10.1073/pnas.0710611105. Epub 2008 Apr 21.
4
Cytoplasmic dynamics reveals two modes of nucleoid-dependent mobility.
Biophys J. 2014 Dec 2;107(11):2684-92. doi: 10.1016/j.bpj.2014.10.030.
5
Dynamics of chromosomal target search by a membrane-integrated one-component receptor.
PLoS Comput Biol. 2021 Feb 4;17(2):e1008680. doi: 10.1371/journal.pcbi.1008680. eCollection 2021 Feb.
6
Evaluation of pulsed-FRAP and conventional-FRAP for determination of protein mobility in prokaryotic cells.
PLoS One. 2011;6(9):e25664. doi: 10.1371/journal.pone.0025664. Epub 2011 Sep 28.
7
Mobility of Min-proteins in Escherichia coli measured by fluorescence correlation spectroscopy.
Phys Biol. 2006 Nov 28;3(4):255-63. doi: 10.1088/1478-3975/3/4/003.
8
Biologistics--diffusion coefficients for complete proteome of Escherichia coli.
Bioinformatics. 2012 Nov 15;28(22):2971-8. doi: 10.1093/bioinformatics/bts537. Epub 2012 Aug 31.
9
Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress.
Mol Microbiol. 2007 May;64(3):858-71. doi: 10.1111/j.1365-2958.2007.05705.x.

引用本文的文献

1
Motor-driven microtubule diffusion in a photobleached dynamical coordinate system.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2417020122. doi: 10.1073/pnas.2417020122. Epub 2025 Jun 9.
4
Protein translation can fluidize bacterial cytoplasm.
PNAS Nexus. 2024 Nov 22;3(12):pgae532. doi: 10.1093/pnasnexus/pgae532. eCollection 2024 Dec.
5
Oscillatory dynamics of Rac1 activity in Dictyostelium discoideum amoebae.
PLoS Comput Biol. 2024 Dec 9;20(12):e1012025. doi: 10.1371/journal.pcbi.1012025. eCollection 2024 Dec.
7
4D Single-particle tracking with asynchronous read-out single-photon avalanche diode array detector.
Nat Commun. 2024 Jul 23;15(1):6188. doi: 10.1038/s41467-024-50512-9.
8
Size Sensitivity of Metabolite Diffusion in Macromolecular Crowds.
Nano Lett. 2024 Apr 12;24(16):4801-9. doi: 10.1021/acs.nanolett.3c05100.
9
Dynamics of cell wall-binding proteins at a single molecule level: autolysins show different kinds of motion.
Mol Biol Cell. 2024 Apr 1;35(4):ar55. doi: 10.1091/mbc.E23-10-0387. Epub 2024 Feb 21.
10
Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions.
Chem Rev. 2024 Feb 28;124(4):1899-1949. doi: 10.1021/acs.chemrev.3c00622. Epub 2024 Feb 8.

本文引用的文献

1
Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo.
Mol Microbiol. 2008 Dec;70(6):1397-407. doi: 10.1111/j.1365-2958.2008.06486.x. Epub 2008 Oct 23.
2
Cytoplasmic protein mobility in osmotically stressed Escherichia coli.
J Bacteriol. 2009 Jan;191(1):231-7. doi: 10.1128/JB.00536-08. Epub 2008 Oct 24.
3
Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15376-81. doi: 10.1073/pnas.0806338105. Epub 2008 Oct 1.
4
Protein exchange dynamics at chemoreceptor clusters in Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6403-8. doi: 10.1073/pnas.0710611105. Epub 2008 Apr 21.
5
The bacterial cytoskeleton.
Curr Opin Cell Biol. 2008 Feb;20(1):19-27. doi: 10.1016/j.ceb.2007.12.006.
6
Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter.
Science. 2008 Jan 25;319(5862):466-9. doi: 10.1126/science.1150559.
7
Probing transcription factor dynamics at the single-molecule level in a living cell.
Science. 2007 May 25;316(5828):1191-4. doi: 10.1126/science.1141967.
8
Positioning of chemosensory clusters in E. coli and its relation to cell division.
EMBO J. 2007 Mar 21;26(6):1615-23. doi: 10.1038/sj.emboj.7601610. Epub 2007 Mar 1.
9
Visualization of functional rotor proteins of the bacterial flagellar motor in the cell membrane.
J Mol Biol. 2007 Mar 30;367(3):692-701. doi: 10.1016/j.jmb.2007.01.015. Epub 2007 Jan 12.
10
Crowding and confinement effects on protein diffusion in vivo.
J Bacteriol. 2006 Sep;188(17):6115-23. doi: 10.1128/JB.01982-05.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验