Ceriani Luca, Ruberto Teresa, Delaloye Angelika Bischof, Prior John O, Giovanella Luca
Department of Nuclear Medicine and PET/CT Centre, Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.
J Nucl Med Technol. 2010 Mar;38(1):18-23. doi: 10.2967/jnmt.109.070243. Epub 2010 Feb 16.
The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications.
A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements.
Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes.
The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and without clinically relevant differences in the LV volumes and the estimated LVEF.
本研究的目的是利用(99m)Tc标记剂门控单光子发射计算机断层扫描(G-SPECT)、QGS程序和跳动心脏模型来表征三维(3D)有序子集期望最大化(OSEM)算法在定量左心室(LV)功能方面的性能,并优化临床应用的重建参数。
获取模拟跳动左心室的动态心脏模型的G-SPECT图像。模型的准确体积已知,如下所示:舒张末期容积(EDV)为112 mL,收缩末期容积(ESV)为37 mL,每搏输出量(SV)为75 mL;这些体积产生的左心室射血分数(LVEF)为67%。在半高宽(FWHM)高斯后处理滤波器截止值为8-15 mm时,经过10-20次迭代(I)、4、8和16个子集(S)后获得断层重建图像。使用QGS程序进行定量测量。
EDV测量值范围为72至92 mL,ESV为18至32 mL,SV为54至63 mL,计算出的LVEF范围为65%至76%。总体而言,10次迭代、8个子集和10 mm的截止滤波器值的组合产生了最准确的结果。关于期望最大化等效迭代(I×S乘积)的测量值图显示,左心室容积呈钟形曲线,LVEF呈反向分布,在中间范围内结果最佳。特别是,FWHM截止值超过10 mm会影响左心室容积的估计。
当与优化的3D OSEM算法(8个子集、10次迭代和10 mm的FWHM)联合使用时,QGS程序能够正确计算LVEF,但会低估左心室容积。然而,包括有限范围的迭代次数和子集数量(80-160次期望最大化等效迭代)以及高斯后处理滤波器的低截止值(≤10 mm)在内的各种技术参数组合,产生的结果具有相似的准确性,并且在左心室容积和估计的LVEF方面没有临床相关差异。