Suppr超能文献

着丝粒蛋白 A 的减少会诱导依赖 p53 的细胞衰老反应,以保护细胞免受有缺陷的有丝分裂的影响。

CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses.

机构信息

Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan.

出版信息

Mol Cell Biol. 2010 May;30(9):2090-104. doi: 10.1128/MCB.01318-09. Epub 2010 Feb 16.

Abstract

Cellular senescence is an irreversible growth arrest and is presumed to be a natural barrier to tumor development. Like telomere shortening, certain defects in chromosome integrity can trigger senescence; however, the roles of centromere proteins in regulating commitment to the senescent state remains to be established. We examined chromatin structure in senescent human primary fibroblasts and found that CENP-A protein levels are diminished in senescent cells. Senescence-associated reduction of CENP-A is caused by transcriptional and posttranslational control. Surprisingly, forced reduction of CENP-A by short-hairpin RNA was found to cause premature senescence in human primary fibroblasts. This premature senescence is dependent on a tumor suppressor, p53, but not on p16(INK4a)-Rb; the depletion of CENP-A in p53-deficient cells results in aberrant mitosis with chromosome missegregation. We propose that p53-dependent senescence that arises from CENP-A reduction acts as a "self-defense mechanism" to prevent centromere-defective cells from undergoing mitotic proliferation that potentially leads to massive generation of aneuploid cells.

摘要

细胞衰老(Cellular senescence)是一种不可逆的生长停滞,被认为是肿瘤发展的天然屏障。与端粒缩短一样,某些染色体完整性缺陷也可能引发衰老;然而,着丝粒蛋白在调节衰老状态的决定中所起的作用尚待确定。我们检测了衰老的人原代成纤维细胞中的染色质结构,发现 CENP-A 蛋白水平在衰老细胞中降低。衰老相关的 CENP-A 减少是由转录和翻译后控制引起的。令人惊讶的是,通过短发夹 RNA 强制降低 CENP-A 被发现会导致人原代成纤维细胞过早衰老。这种过早衰老依赖于肿瘤抑制因子 p53,但不依赖于 p16(INK4a)-Rb;p53 缺陷细胞中 CENP-A 的耗竭会导致染色体错误分离的异常有丝分裂。我们提出,由于 CENP-A 减少而导致的 p53 依赖性衰老作为一种“自我防御机制”,可防止着丝粒缺陷细胞进行有丝分裂增殖,从而潜在地导致非整倍体细胞的大量产生。

相似文献

1
CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses.
Mol Cell Biol. 2010 May;30(9):2090-104. doi: 10.1128/MCB.01318-09. Epub 2010 Feb 16.
3
Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence.
Cell Signal. 2013 Dec;25(12):2540-7. doi: 10.1016/j.cellsig.2013.08.014. Epub 2013 Aug 30.
4
HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.
J Gerontol A Biol Sci Med Sci. 2013 Aug;68(8):914-25. doi: 10.1093/gerona/gls257. Epub 2013 Jan 4.
7
P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells.
J Biol Chem. 2004 Jan 30;279(5):3807-16. doi: 10.1074/jbc.M309333200. Epub 2003 Nov 6.
8
Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence.
Cell Cycle. 2015;14(8):1164-73. doi: 10.1080/15384101.2015.1010866.
9
Early growth response 2 (EGR2) is a novel regulator of the senescence programme.
Aging Cell. 2021 Mar;20(3):e13318. doi: 10.1111/acel.13318. Epub 2021 Feb 6.

引用本文的文献

1
Interrogating the regulatory epigenome of cellular senescence.
Cell Mol Life Sci. 2025 Aug 31;82(1):328. doi: 10.1007/s00018-025-05848-w.
2
Maternal CENP-C restores centromere symmetry in mammalian zygotes to ensure proper chromosome segregation.
bioRxiv. 2025 Jul 28:2025.07.23.666394. doi: 10.1101/2025.07.23.666394.
3
Light-dark shift promotes colon carcinogenesis through accelerated colon aging.
iScience. 2024 Dec 9;28(1):111560. doi: 10.1016/j.isci.2024.111560. eCollection 2025 Jan 17.
4
Centromere inactivation during aging can be rescued in human cells.
Mol Cell. 2025 Feb 20;85(4):692-707.e7. doi: 10.1016/j.molcel.2024.12.018. Epub 2025 Jan 13.
5
The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression.
NPJ Aging. 2024 Oct 24;10(1):48. doi: 10.1038/s41514-024-00172-2.
6
The impact of mosaic loss of the Y chromosome (mLOY) in men of advanced age.
Biogerontology. 2024 Nov;25(6):943-955. doi: 10.1007/s10522-024-10133-7. Epub 2024 Sep 2.
7
Investigation of differentially expressed genes related to cellular senescence between high-risk and non-high-risk groups in neuroblastoma.
Front Cell Dev Biol. 2024 Jul 29;12:1421673. doi: 10.3389/fcell.2024.1421673. eCollection 2024.
10
The two sides of chromosomal instability: drivers and brakes in cancer.
Signal Transduct Target Ther. 2024 Mar 29;9(1):75. doi: 10.1038/s41392-024-01767-7.

本文引用的文献

1
CENPA overexpression promotes genome instability in pRb-depleted human cells.
Mol Cancer. 2009 Dec 10;8:119. doi: 10.1186/1476-4598-8-119.
2
Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency.
Nat Cell Biol. 2008 Jul;10(7):825-36. doi: 10.1038/ncb1744. Epub 2008 May 30.
3
Telomere dysfunction and tumour suppression: the senescence connection.
Nat Rev Cancer. 2008 Jun;8(6):450-8. doi: 10.1038/nrc2393.
4
Inactivation of a human kinetochore by specific targeting of chromatin modifiers.
Dev Cell. 2008 Apr;14(4):507-22. doi: 10.1016/j.devcel.2008.02.001.
5
CENP-B controls centromere formation depending on the chromatin context.
Cell. 2007 Dec 28;131(7):1287-300. doi: 10.1016/j.cell.2007.10.045.
6
Cellular senescence in cancer and aging.
Cell. 2007 Jul 27;130(2):223-33. doi: 10.1016/j.cell.2007.07.003.
7
Surveillance mechanism linking Bub1 loss to the p53 pathway.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8334-9. doi: 10.1073/pnas.0703164104. Epub 2007 May 8.
8
The spindle-assembly checkpoint in space and time.
Nat Rev Mol Cell Biol. 2007 May;8(5):379-93. doi: 10.1038/nrm2163. Epub 2007 Apr 11.
9
The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence.
Genes Dev. 2007 Jan 1;21(1):43-8. doi: 10.1101/gad.1487307.
10
Loss of linker histone H1 in cellular senescence.
J Cell Biol. 2006 Dec 18;175(6):869-80. doi: 10.1083/jcb.200604005. Epub 2006 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验