Wall Melanie M, Liu Xuan
University of Minnesota, Division of Biostatistics.
Comput Stat Data Anal. 2009 Jun 15;53(8):3057-3069. doi: 10.1016/j.csda.2008.07.037.
A spatial latent class analysis model that extends the classic latent class analysis model by adding spatial structure to the latent class distribution through the use of the multinomial probit model is introduced. Linear combinations of independent Gaussian spatial processes are used to develop multivariate spatial processes that are underlying the categorical latent classes. This allows the latent class membership to be correlated across spatially distributed sites and it allows correlation between the probabilities of particular types of classes at any one site. The number of latent classes is assumed fixed but is chosen by model comparison via cross-validation. An application of the spatial latent class analysis model is shown using soil pollution samples where 8 heavy metals were measured to be above or below government pollution limits across a 25 square kilometer region. Estimation is performed within a Bayesian framework using MCMC and is implemented using the OpenBUGS software.
本文介绍了一种空间潜在类别分析模型,该模型通过使用多项probit模型向潜在类别分布中添加空间结构,扩展了经典潜在类别分析模型。独立高斯空间过程的线性组合用于开发作为分类潜在类别的基础的多变量空间过程。这使得潜在类别成员资格在空间分布的地点之间具有相关性,并且允许在任何一个地点特定类型类别的概率之间存在相关性。潜在类别的数量假定为固定的,但通过交叉验证进行模型比较来选择。使用土壤污染样本展示了空间潜在类别分析模型的应用,在一个25平方公里的区域内,测量了8种重金属是否高于或低于政府污染限值。在贝叶斯框架内使用MCMC进行估计,并使用OpenBUGS软件实现。